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Abstract. Recent theoretical and experimental studies on the critical properties of frustrated
antiferromagnets with non-collinear spin order, including stacked-triangular antiferromagnets
and helimagnets, are reviewed. Particular emphasis is put on the novel critical and multicritical
behaviours exhibited by these magnets, together with the important role played by the ‘chirality’.

1. Introduction

Phase transitions and critical phenomena have been a central issue of statistical physics for
many years. In particular, phase transitions of magnets or of ‘spin systems’ have attracted
special interest. Thanks to extensive theoretical and experimental studies, we now have a
rather good understanding of the nature of phase transitions of standard ferromagnets and
antiferromagnets. By the term ‘standard’, I mean here regular and unfrustrated magnets
without quenched disorder and frustration. They include ferromagnets and unfrustrated
antiferromagnets with collinear spin order.

One key notion which emerged through these studies is the notion of universality.
According to the universality hypothesis, a variety of continuous (or second-order) phase
transitions can be classified into a small number of universality classes determined by a few
basic properties characterizing the system under study, such as the space dimensionalityd,
the symmetry of the order parameter and the range of interaction. If one is interested only
in the so-called universal quantities, such as critical exponents, amplitude ratios and scaled
equations of state, various phase transitions should exhibit exactly the same behaviour. In
the case of standard bulk magnets in three spatial dimensions (d = 3), the universality
class is basically determined by the number of spin components,n. Physically, the index
n is related to the type of magnetic anisotropy: that is,n = 1 (Ising), n = 2 (XY) and
n = 3 (Heisenberg) correspond to magnets with easy-axis-type anisotropy, easy-plane-
type anisotropy and no anisotropy (isotropic magnets), respectively. The critical properties
associated with thesen-component O(n) universality classes have been extensively studied
and are now rather well understood. From the renormalization-group (RG) viewpoint, these
critical properties are governed by the so-called Wilson–Fisher O(n) fixed point.

Of course, there are classes of magnets exhibiting phase transitions whose behaviours
are very different from the standard O(n) behaviour. One example of such a class is the
random magnets with quenched disorder. A typical example is a spin glass, a magnet not
only random but alsofrustrated. Even in regular magnets without quenched disorder, one
can expect novel transition behaviour if the magnets are frustrated. In fact, the nature of
the phase transitions of frustrated magnets could be novel and entirely different from that of
the phase transitions of conventional unfrustrated magnets, as we shall see in what follows.
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1.1. Frustration

Frustration could arise either from the special geometry of the lattice, or from the
competition between the near-neighbour and further-neighbour interactions. The former
type of frustration may be seen in antiferromagnets on a two-dimensional (2D) triangular
lattice or on a three-dimensional (3D) stacked-triangular (simple hexagonal) lattice, which
consists of two-dimensional triangular layers stacked along an orthogonal direction. The
latter type of frustration may be realized in helimagnets where a magnetic spiral is formed
along a certain direction of the lattice.

Figure 1. The ground-state spin configuration of three Ising spins on a triangle coupled
antiferromagnetically. Frustration leads to non-trivial degeneracy of the ground state.

Spin frustration brings about interesting consequences for the resulting spin structures.
As an example, let us consider three antiferromagnetically coupled spins located at each
corner of a triangle. The stable spin configurations differ depending on the type of spin
symmetry, or the number of spin componentsn. In the case of one-component Ising spins
(n = 1), the ground state is not uniquely determined: the situation here is illustrated in
figure 1. Frustration in the Ising case thus leads to non-trivial degeneracy of the ordered
state.

By contrast, when the spin has a continuous symmetry as in the case of vector spins such
as the two-componentXY (n = 2) and the three-component Heisenberg (n = 3) spins, the
ground-state spin configurations becomenon-collinear or canted, as illustrated in figure 2.
Note that, in this case, frustration is partially released by mutual spin canting and there no
longer remains a non-trivial degeneracy of the ground state up to global O(n) spin rotation
and reflection. In this article, we shall concentrate on this latter type of frustrated magnet
with non-collinear or canted ordered states.

1.2. Chirality

One interesting consequence of such canted spin structures is the appearance of a ‘chiral’
degree of freedom. Let us consider, for example, the case ofXY spins shown in figure 2. If
the exchange interactions are equal in magnitude on the three bonds, the ground-state spin
configuration is the so-called ‘120◦ spin structure’, in which threeXY spins form 120◦ angles
with the neighbouring spins. As shown in figure 2, the ground state of such triangularXY
spins is twofold degenerate according to whether the resulting non-collinear spin structure
is right- or left-handed (chiral degeneracy). A given chiral state cannot be transformed into
the state with the opposite chirality via any global spin rotation in theXY-spin space, global
spin reflection being required to achieve this. One may assign achirality + or − to each
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Figure 2. The ground-state spin configuration of three vector spins on a triangle coupled
antiferromagnetically. Frustration leads to the non-collinear or canted ordered state. In the case
of n = 2-componentXY spins, the ground state is twofold degenerate according to whether
the non-collinear spin structure is right- or left-handed, each of which is characterized by the
opposite chirality as shown in (a) and (b).

of these two ground states. In other words, the ground-state manifold of the frustratedXY
magnets possesses a hidden Ising-like discrete degeneracy, chiral degeneracy, in addition to
a continuous degeneracy associated with the continuousXY-spin symmetry. The concept
of chirality was introduced into magnetism first by Villain [1].

To characterize these two chiral states, it is convenient to introduce a scalar quantity,
chirality, defined by [2]

κp = 2

3
√

3

p∑
〈ij〉

[Si × Sj ]z = 2

3
√

3

p∑
〈ij〉
(Sxi S

y

j − Syi Sxj ) (1.1)

where the summation runs over the three directed bonds surrounding a plaquette (triangle).
One can easily confirm thatκp gives±1 for the two spin configurations depicted in figure 2.
Note that the chirality defined by (1.1) is apseudoscalarin the sense that it is invariant under
global spin rotation (SO(2) = U(1)) while it changes sign under global spin reflection (Z2).

In the triangular spin structure formed by then = 3-component Heisenberg spins, by
contrast, there is no longer a discrete chiral degeneracy since the two spin configurations in

Figure 3. Chiral degeneracy in the ordered state of theXY antiferromagnet on the triangular
lattice.
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figure 2 can now be transformed into each other by continuous spin rotation via the third
dimension of the Heisenberg spin. However, one can define a chiralityvector as an axial
vector defined by [3]

κp = 2

3
√

3

p∑
〈ij〉
Si × Sj . (1.2)

The situation described above is essentially the same also in the 2D triangular and
3D stacked-triangular antiferromagnets. In the ordered state, the sublattice-magnetization
vector on each sublattice (the triangular layer consists of three interpenetrating triangular
sublattices) cant with each other making an angle equal to 120◦. In the case ofXY spins,
such triangular structure gives rise to chiral degeneracy as shown in figure 3.

Figure 4. Chiral degeneracy in the ordered state of theXY helimagnet.

Similar chiral degeneracy is also realized in other types of canted magnet such as
helimagnets (spiral magnets), in which right- and left-handed helices, as illustrated in
figure 4, are energetically degenerate.

1.3. A short history of the research

Historically, studies on the critical properties of canted or non-collinear magnets were
initiated more than 20 years ago for the rare-earth helimagnets Ho, Dy and Tb. In 1976, Bak
and Mukamel analysed theoretically the critical properties of the paramagnetic–helimagnetic
transition of the easy-plane-type (XY-like) helimagnets Ho, Dy and Tb [4]. Bak and
Mukamel derived an effective Hamiltonian called the Landau–Ginzburg–Wilson (LGW)
Hamiltonian appropriate for theXY (n = 2) helimagnet and performed a renormalization-
group (RG)ε = 4− d expansion analysis. They found a stable O(4)-like fixed point and
claimed that Ho, Dy and Tb should exhibit a continuous transition characterized by the
standard O(4)-like exponentsα ' −0.17, β ' 0.39, γ ' 1.39 andν ' 0.70. Note that the
predicted singularity is weaker than that of the unfrustrated collinearXY magnet; that is,
α is more negative whileβ, γ andν are larger. Similarε-expansion analysis with special
attention paid to the effect of commensurability on the helical transition was also carried out
by Garel and Pfeuty [5], who found, for the case ofXY (n = 2) spins, the same O(4)-like
fixed point as was obtained by Bak and Mukamel.

Meanwhile, experiments on the rare-earth helimagnets Ho, Dy and Tb gave somewhat
inconclusive results. Some of these experiments, especially the neutron diffraction meas-
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urements for Ho [6], supported the predicted O(4) behaviour, while some other experiments,
such as the specific-heat measurements for Dy [7], Mössbauer measurements for Dy [8] and
neutron diffraction measurements for Tb [9], yielded exponents significantly different from
the O(4) values.

A few years later, Barak and Walker reanalysed the RG calculation by Bak and Mukamel,
and found that the O(4)-like fixed point found by them was actually located in the region of
the parameter space representing thecollinear spin-density-wave (SDW) order, not the non-
collinear helical order [10]. Since no stable fixed point was found in the appropriate region
in the parameter space, Barak and Walker concluded that the paramagnetic–helimagnetic
transition of Ho, Dy and Tb should be first order. Although most of the experimental work
on Ho, Dy and Tb done so far has reported a continuous transition, a few authors suggested
that the transition of Ho and Dy might actually be weakly first order [11, 12]. In fact, the
experimental situation concerning the critical properties of these rare-earth helimagnets has
remained confused for years now, in the sense that different authors reported significantly
different exponent values, or even different orders of the transition,for the same exponent
of the same material. For example, the reported values of the exponentβ are scattered from
0.21 (Tb; x-ray) [13], 0.23 (Tb; neutron) [14], 0.25 (Tb; neutron) [9], 0.3 (Ho; neutron)
[15], 0.335 (Dy; M̈ossbauer) [8], 0.37 (Ho; x-ray) [15], 0.38 (Dy; neutron) [16], 0.39 (Ho;
neutron) [16, 18] to 0.39 (Dy; neutron) [17, 18].

In 1985–6, the first theoretical analysis of the critical properties of stacked-triangular
antiferromagnets was made by the present author for the cases ofXY and Heisenberg spins
[19, 20]. By means of a symmetry analysis and Monte Carlo simulations, it was claimed
that, due to its chiral degrees of freedom, the phase transition of these stacked-triangular
antiferromagnets might be novel, possibly belonging to a new universality class, called
the chiral universality class, different from the standard O(n) Wilson–Fisher universality
class. The critical singularity observed in Monte Carlo simulations was stronger than that
of the unfrustrated collinearXY and Heisenberg magnets, which is the opposite of Bak
and Mukamel’s O(4) prediction. Indeed, the exponent values determined by Monte Carlo
simulations wereα = 0.34±0.06,β = 0.253±0.01, γ = 1.13±0.05 andν = 0.54±0.02
for theXY case, andα = 0.24±0.08,β = 0.30±0.02,γ = 1.17±0.07 andν = 0.59±0.02
for the Heisenberg case [21]. It was predicted that such novel critical behaviour should be
observed for the stacked-triangularXY antiferromagnet CsMnBr3 (n = 2 chiral universality)
[20, 22], and for the stacked-triangular Heisenberg antiferromagnets VCl2 and VBr2 (n = 3
chiral universality) [19, 22], while helimagnets such as Ho, Dy and Tb were also argued to
exhibit the same noveln = 2 chiral critical behaviour asymptotically [20, 22]. RG analyses
based onε = 4− d and 1/n expansions were also made by the author, and a new fixed
point describing the non-collinear criticality was identified [23].

Stimulated by this theoretical prediction, several experiments were subsequently made
on the critical properties of the stacked-triangular antiferromagnets CsMnBr3, VCl2 and
VBr2. The first experimental measurements of the critical properties of the stacked-triangular
XY antiferromagnet CsMnBr3 were performed by two groups, i.e., neutron scattering
measurements by the McMaster group (Mason, Gaulin and Collins) [24] and those by
the Japanese group (Ajiro, Kadowaki and co-workers) [25]. The results of these two
independent measurements were consistent with each other and yielded exponent values
close to the predicted values, giving some support to the chiral-universality scenario. Since
then, further measurements have been performed on CsMnBr3, including high-precision
specific-heat measurements by the Santa Cruz group (Wang, Belanger and Gaulin) [26] and
those by the Karlsruhe group (Deutschmann, Wosnitza, von Löhneysen and Kremer) [27].
For the stacked-triangular Heisenberg antiferromagnets VCl2 and VBr2, following the first
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specific-heat measurements by Takeda and co-workers [28], both neutron scattering [29] and
specific-heat [30] measurements were performed. Most of the exponents and specific-heat
amplitude ratios obtained were in reasonable agreement with the predicted values.

By contrast, a more conservative view was proposed by Azaria, Delamotte and Jolicoeur
a few years later [31, 32]. These authors studied a certain non-linear sigma model expected
to describe the Heisenberg (n = 3) non-collinear or canted magnets based on the RG
ε = d − 2 expansion technique, and found a stable fixed point which was nothing but the
standard O(4) Wilson–Fisher fixed point. These authors then suggested that the magnetic
phase transition of non-collinear magnets, including both stacked-triangular antiferromagnets
and helimagnets, might be of standard O(4) universality. The O(4) fixed point found there
for the Heisenberg spins is different in nature from the O(4)-like fixed point found by Bak
and Mukamel for theXY spins [4]: the former O(4) fixed point has no counterpart in the
ε = 4− d expansion. Azariaet al further speculated that the non-collinear transition could
be either first order or mean-field tricritical depending on the microscopic properties of the
system.

One useful method for directly testing those theoretical predictions is a Monte Carlo
simulation on a simple spin model. Following the first Monte Carlo study on theXY and
Heisenberg stacked-triangular antiferromagnets [19–21], extensive Monte Carlo simulations
have been performed by several different groups, including the Saclay group (Bhattacharya,
Billoire, Lacaze and Jolicoeur; Heisenberg) [33], the Cergy group (Loison, Boubcheur and
Diep; XY [34] and Heisenberg [35]) and the Sherbrooke group (Mailhot, Plumer and Caillé;
XY [36] and Heisenberg [37]). In the numerical sense, the results reported agreed with
each other and with the earlier simulation of reference [21], except for a small difference
remaining in some exponents of theXY system. More specifically, in the Heisenberg case,
the results support the chiral-universality scenario in the sense that a continuous transition
characterized by the novel exponents was observed in common. In particular, one may now
rule out the possibility of the standard O(4) critical behaviour and of the mean-field tricritical
behaviour predicted by Azariaet al. In the XY case, the results are again consistent with
the chiral-universality scenario, but inconsistent with the O(4)-like behaviour predicted by
Bak and Mukamel. Meanwhile, since the exponent values predicted for then = 2 chiral
universality are not very different from the mean-field tricritical valuesα = 0.5, β = 0.25
andγ = 1, some authors interpreted their Monte Carlo results on theXY model as favouring
mean-field tricritical behaviour rather than the chiral universality [36]. One should also bear
in mind that the possibility of a weak first-order transition may not be completely ruled out
by numerical simulations for finite lattices.

Important progress was also made in the study of the magnetic phase diagram and
the multicritical behaviour of stacked-triangular antiferromagnets under external magnetic
fields. In particular, a magnetic phase diagram with a novel multicritical point, different from
those of the standard unfrustrated antiferromagnets, was observed by Johnson, Rayne and
Friedberg for the weakly Ising-like stacked-triangular antiferromagnet CsNiCl3 by means of
susceptibility measurements [38]. For the stacked-triangularXY antiferromagnet CsMnBr3,
Gaulin, Mason, Collins and Larese revealed by means of neutron scattering measurements
that the zero-field transition point corresponds to a tetracritical point in the magnetic
field–temperature phase diagram [39]. These novel critical and multicritical properties
of stacked-triangular antiferromagnets under external fields were theoretically investigated
by Kawamura, Cailĺe and Plumer within a scaling theory based on the chiral-universality
scenario, and several predictions were made [40]. To test these scaling prediction, further
experiments were performed in turn, which revealed features of the non-collinear transitions
under external fields.
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1.4. Outline of the article

In the following sections, I wish to review in more detail these theoretical and experimental
studies concerning the critical properties of non-collinear or canted magnets [41–44]. In
section 2, I will introduce several typical magnetic materials exhibiting non-collinear spin
order, and introduce simple spin models used in describing these non-collinear transitions.
The LGW Hamiltonian appropriate for the non-collinear transitions is also introduced. In
section 3, an intuitive symmetry argument is given on the basis of the notion of the order-
parameter space. Symmetry properties of the LGW Hamiltonian are also examined. An
analysis of topological defects in the non-collinearly ordered state is given, and the nature of
topological phase transitions mediated by topological defects is briefly discussed. Section 4
is devoted to RG analyses of the non-collinear transitions, includingε = 4− d expansion,
1/n expansion andε = d−2 expansion. After the results of these RG calculations have been
presented, several different theoretical proposals are explained and discussed. In section 5,
the results of Monte Carlo simulations on the critical properties ofXY and Heisenberg
stacked-triangular antiferromagnets and of several related models are presented. In section 6,
experimental results on the critical properties of both stacked-triangular antiferromagnets
and helimagnets are reviewed. A possible experimental method for measuring the chirality
is mentioned. The phase transition of stacked-triangular antiferromagnets under external
magnetic fields is reviewed in section 7, with particular emphasis on the phase diagram and
novel multicritical behaviour. Finally, in section 8, I summarize the present status of the
study, and discuss future problems.

2. Materials and models

In this section, I introduce typical materials and model systems which have been used
in the study of non-collinear phase transitions. These include both (a) stacked-triangular
antiferromagnets and (b) helimagnets.

2.1. Stacked-triangular antiferromagnets

In stacked-triangular antiferromagnets, magnetic ions are located at each site of a
three-dimensional stacked-triangular (simple hexagonal) lattice. Magnetic ions inter-
act antiferromagnetically in the triangular layer, which causes geometry-induced frus-
tration. The most extensively studied stacked-triangular antiferromagnets are ABX3-type
compounds, A standing for elements such as Cs and Rb, B standing for magnetic ions such
as Mn, Cu, Ni and Co, and X standing for halogens such as Cl, Br and I [42, 44]. While
these materials are magnetically quasi-one-dimensional ones, it has been established that
most of them exhibit a magnetic transition to a three-dimensionally ordered state at low
temperatures with sharp magnetic Bragg peaks. There are a rich variety of materials for the
various combinations of the constituent ions, A, B and X [44].

Crucial to the nature of the phase transition is the type of the magnetic anisotropy.
Some of these compounds are Ising-like with easy-axis-type (or axial) anisotropy, some
areXY-like with easy-plane-type (or planar) anisotropy and others are Heisenberg-like with
negligibly small anisotropy. In zero field, the non-collinear criticality is realized in the
XY and Heisenberg systems, which include CsMnBr3, CsVBr3 (XY), CsVCl3 and RbNiCl3
(nearly Heisenberg). By contrast, the Ising-like axial magnets, including CsNiCl3, CsNiBr3
and CsMnI3, often exhibit two successive phase transitions in zero field with a collinearly
ordered intermediate phase. If an external field of appropriate intensity is applied along an
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easy axis, however, a direct transition from the paramagnetic state to the non-collinearly
ordered state becomes possible. Such a transition in an external field is characterized by
non-trivial chirality, and will also be discussed later in section 6 and section 7.

Quasi-two-dimensional realizations of stacked-triangular antiferromagnets may include
the vanadium compounds VX2 with X = Cl and Br. VX2 is a nearly isotropic (Heisenberg-
like) magnet with weak Ising-like anisotropy. While VX2 exhibits two successive transitions
at two distinct but mutually close temperatures due to the weak easy-axis-type anisotropy
(TN1 ' 35.88 K andTN2 ' 35.80 K in the case of VCl2 [29]), it is expected to behave as
an isotropic Heisenberg system except close toTN1 or TN2.

Since our interest is in non-collinear criticality, we will mainly be concerned in this
article with vector-spin systems, including bothn = 2-componentXY andn = 3-component
Heisenberg spin models. A simple vector-spin Hamiltonian often used in modelling such
stacked-triangular antiferromagnets may be given by

H = −J
∑
〈ij〉
Si · Sj − J ′

∑
〈〈ij〉〉

Si · Sj (2.1)

whereSi = (S
(1)
i , S

(2)
i , . . . , S

(n)
i ) is an n-component unit vector with|Si | = 1 located at

the ith site of a stacked-triangular lattice, whileJ < 0 andJ ′ represent the intraplane and
interplane nearest-neighbour couplings. The first sum is taken over all nearest-neighbour
pairs in the triangular layer, while the second sum is taken over all nearest-neighbour pairs
along the chain direction orthogonal to the triangular layer.

2.2. Helimagnets

The second class of non-collinear magnets is the helimagnets or spiral magnets. Examples
include β-MnO2 and the rare-earth metals Ho, Dy and Tb. The rare-earth helimagnets
Ho, Dy and Tb crystallize into the hexagonal-close-packed (hcp) structure, and form
magnetic spirals along thec-axis belowTN with the moments lying in the basal plane. The
interaction between the magnetic moments is the long-range Ruderman–Kittel–Kasuya–
Yoshida (RKKY) interaction which falls off as 1/r3 and oscillates in sign with distance
r. The oscillating nature of the RKKY interaction leads to frustration between the near-
neighbour and further-neighbour interactions which stabilizes the non-collinear helical spin
structure.

A simple model Hamiltonian which gives rise to a spiral structure is the axial-next-
nearest-neighbourXY or Heisenberg model on a simple cubic lattice, with the ferro-
magnetic (or antiferromagnetic) nearest-neighbour interaction in all directions and the anti-
ferromagnetic next-nearest-neighbour interaction along one particular direction, say thex-
direction. The Hamiltonian may be written as

H = −J1

∑
〈ij〉
Si · Sj − J2

∑
〈〈ij〉〉

Si · Sj (2.2)

where the first sum is taken over all nearest-neighbour pairs on the lattice while the second
sum is taken over next-nearest-neighbour pairs along thex-direction. The competition
between the nearest-neighbour interactionJ1 and the antiferromagnetic axial next-nearest-
neighbour interactionsJ2 < 0 gives rise to a magnetic spiral along thex-direction when the
value of |J2/J1| exceeds a certain critical value.

One difference between such spiral structure and the non-collinear structure in the
stacked-triangular antiferromagnet is that the pitch of the helix is generally incommensurate
with the underlying lattice, in contrast to the 120◦ spin structure which is always
commensurate with the underlying lattice. (In fact, one can generate the incommensurate
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spin structure even in stacked-triangular antiferromagnets, e.g., by breaking the equivalence
of the intraplane couplings [45, 46]. This case might have some relevance to the
incommensurate spin order in RbMnBr3 as will be discussed in section 6.)

Figure 5. Representations of ‘instability points’, solid and open circles, in wavevector space
for (a) ferromagnets, (b) antiferromagnets on bipartite lattices, (c) stacked-triangular anti-
ferromagnets and (d) helimagnets. The dashed lines outline the first Brillouin zone. Double
lines represent the reciprocal-lattice vectorsK: as usual, points connected by a vectorK
should be fully identified.

2.3. The Landau–Ginzburg–Wilson (LGW) Hamiltonian

The spin Hamiltonians (2.1) and (2.2) have been written in terms of spin variables of fixed
length, |Si | = 1. In some of the RG analyses such asε = 4− d or 1/n expansions, an
alternative form of Hamiltonian written in terms of spin variables of unconstrained length is
often used. It is given in the form of an expansion in order-parameter fields (critical modes),
and is called the Landau–Ginzburg–Wilson (LGW) Hamiltonian. In the case of standard
ferromagnets or unfrustrated collinear antiferromagnets, an appropriate LGW Hamiltonian
is the so-calledφ4-model whose Hamiltonian density is given by

HLGW = 1

2
[(∇φ)2+ rφ2+ uφ4] (2.3)

where then-component vector fieldφ = (φ1, φ2, . . . , φn) represents a near-critical mode
around an instability point. In unfrustrated ferromagnets or antiferromagnets, the instability
occurs only at one point in the wavevector space, as shown in figures 5(a) and 5(b).
Therefore, a singlen-vector fieldφ is sufficient for describing the phase transition.

By contrast, in the case of non-collinear or canted magnets such as stacked-triangular
antiferromagnets or helimagnets, the instability occurs simultaneously at two distinct points
in the wavevector space. Therefore, two equivalent but distinctn-component vector fields
are needed to describe the associated phase transition. The situation is illustrated in
figures 5(c) and 5(d) for the cases of stacked-triangular antiferromagnets and helimagnets,
respectively. These two instability modes may be taken as the Fourier modes at±Q,
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whereQ = (4π/3, 0, 0, . . . ,0) for the case of stacked-triangular antiferromagnets and
Q = (2π/λ, 0, 0, . . . ,0) for the case of helimagnets,λ being the pitch of the helix. It
is convenient for later use to extend the model to generald spatial dimensions. In the
case of stacked-triangular antiferromagnets, the lattice is then regarded as two-dimensional
triangular layers stacked in hypercubic fashion along the remainingd − 2 directions, while
in the case of helimagnets, the competing second-neighbour interaction is assumed to work
only along the first direction ind dimensions, along which the helix is formed.

One can derive the soft-spin LGW Hamiltonian starting from the microscopic hard-spin
Hamiltonian (2.1) or (2.2) by a series of transformations [23]. By softening the fixed-length
spin condition, Fourier transforming and retaining only near-critical models, one obtains

HLGW = 1

2
[(∇a)2+ (∇b)2+ r(a2+ b2)+ u(a2+ b2)2+ v{(a · b)2− a2b2}] (2.4)

wherea andb aren-component vector fields representing the cosine and sine components
associated with the non-collinear spin structure at wavevectors±Q via

S(r) = a(r) cos(Q · r)+ b(r) sin(Q · r). (2.5)

In order for the spin structure (2.5) to really represent the non-collinear order, thea- and
b-fields must be orthogonal to each other. This requires that the quartic couplingv in the
LGW Hamiltonian (2.4) should be positive. Ifv is negative, on the other hand, the spin
structure given by (2.5) represents the collinearly ordered SDW state (or the sinusoidal
state). The LGW Hamiltonian (2.4) forms a basis of the following RG analysis based on
ε = 4− d and 1/n expansions.

In the particular case ofXY (n = 2) spins, one can transform equation (2.4) into a
different form [23]:

HLGW = 1

2

[
(∇A)2+ (∇B)2+ r(A2+B2)+

(
u− 1

4
v

)
(A4+B4)

+ 2

(
u+ 1

4
v

)
A2B2

]
(2.6)

whereA andB are two-component fields defined by

Ax = (ax + by)/
√

2 Bx = (ay + bx)/
√

2

Ay = (ay − bx)/
√

2 By = (−ax + by)/
√

2.
(2.7)

The RG analysis of reference [4] was performed on the basis of the form (2.6), rather than
(2.4). From (2.6), it is easy to see that, in the case ofn = 2, the model reduces to two
decoupledXY models on the special manifoldv = −4u. Note that this manifold lies in the
sinusoidal region,v < 0.

Essentially the same LGW Hamiltonian has also been used in other problems such as
that of the phase transition of the dipole-locked A phase of helium three [47, 48], the
superconducting phase transition of the heavy-fermion superconductor UPt3 [49] and the
quantum phase transition of a certain Josephson junction array in a magnetic field [50].

3. Symmetry

3.1. Symmetry of the ordered state

Because of its non-trivial chiral degrees of freedom, the ordered state of frustrated non-
collinear magnets has a symmetry that differs from that of unfrustrated collinear magnets.
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Let us consider, for example, the case of then = 3-component Heisenberg spins. In the
unfrustrated collinear case, spins align parallel or antiparallel with each other forming the
collinear ground state. One can see that such a ground state is invariant under global spin
rotation around the magnetization (or the sublattice-magnetization) axis. In the frustrated
non-collinear case, by contrast, the 120◦ spin structure does not have such an invariance.
Therefore, symmetries of the ordered states are clearly different in the collinear and the non-
collinear cases. Obviously, the conventional indexn, the number of the spin components,
is inadequate for distinguishing between such differences in the symmetry of the ordered
states.

In order to characterize the relevant symmetry, it is convenient to introduce the notion
of order-parameter space, which is a topological space isomorphic to the set of ordered
states [51]. In the collinear case, the order-parameter spaceV may be represented by a
single arrow in the three-dimensional spin space and is isomorphic to the two-dimensional
sphere S2 (the surface of a ball in Euclidean three-space). In the non-collinear case, the
order-parameter space cannot be represented by a single arrow. Instead, additional structure
caused by non-collinear alignment of spins leads to an order-parameter space isomorphic
to the three-dimensional rotation group SO(3), or equivalently, to the projective space P3

[3]. In the collinear case, rotation invariance around the magnetization axis reduces the
order-parameter space toV = SO(3)/SO(2) = S2.

In the case of then = 2-componentXY spins, the order-parameter space of unfrustrated
collinear systems isV = S1 = SO(2), while that of frustrated non-collinear systems is
V = Z2× S1 = Z2× SO(2) = O(2) where Z2 pertains to the aforementioned twofold
chiral degeneracy while S1 = SO(2) pertains the rotation symmetry of the originalXY
spins.

Order-parameter space may also be defined as a topological space obtained by dividing
the whole symmetry group of the Hamiltonian, which we assume to be O(n), by the
subgroup which keeps the ordered state (the symmetry-broken state) unchanged [51]. With
the use of this definition, one can easily generalize the argument to the generaln > 2-
component vector spins. In the unfrustrated collinear case, the invariant subgroup turns
out to be O(n− 1), consisting of the rotation around the magnetization axis. This leads to
the associated order-parameter space isomorphic to the(n − 1)-dimensional hypersphere,
V = O(n)/O(n − 1) = SO(n)/SO(n − 1) = Sn−1. In the particular cases ofn = 2 or 3,
this simply reproduces the results mentioned above.

In the frustrated non-collinear case, if one notes that the 120◦ spin structure spans
the two-dimensional subspace inn-dimensional spin space, one may see that the invariant
subgroup is O(n− 2) rather than O(n− 1). Thus, the order-parameter space for then > 2-
component non-collinear systems is isomorphic to the Stiefel manifold,V = O(n)/O(n−2)
[41]. In then = 2 case, it reduces toV = O(2) since O(0) = 1, whereas in then = 3 case,
it reduces toV = SO(3) since O(1) = Z2.

Thus, the difference in the symmetry of the ordered states can be described in topological
terms as the difference in the associated order-parameter spaces. Since the symmetry of
the ordered state is a crucial ingredient of the corresponding disordering phase transition,
this observation strongly suggests that the frustrated non-collinear magnets might exhibit a
novel phase transition, possibly belonging to a new universality class [19, 20]. Of course,
another possibility might be that these non-collinear magnets exhibit a first-order transition.
One cannot even rule out the possibility that the symmetry is dynamically restored at
the transition, and that the non-collinear transition is in the conventional Wilson–Fisher
universality class. In order to determine which of the above possibilities is actually the
case, more detailed analysis is needed. Still, the fact that one obtains for frustrated non-
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collinear magnets an order-parameter space different from that for the unfrustrated collinear
magnets gives a hint that something new may happen in the non-collinear transitions.

3.2. The symmetry of the LGW Hamiltonian

Next, let us examine the symmetry properties of the LGW Hamiltonian of non-collinear
magnets withn-component spins, equation (2.4). The LGW Hamiltonian is invariant
under the following two symmetry transformations: (i) O(n) spin rotation,a′ = Ra,
b′ = Rb with R ∈ O(n), as well as (ii) O(2) phase rotation,a′ = (cosθ)a − (sinθ)b,
b′ = ±((sinθ)a + (cosθ)b) [23]. The latter invariance arises from the arbitrariness in
choosing the phase and the handedness of the two basis vectors.

Conversely, the symmetry requirements (i) and (ii) fully determine the form of the
Hamiltonian up to quartic order in the fieldsa and b as given in (2.4). One may easily
see that this O(n) × O(2) symmetry of the LGW Hamiltonian just corresponds to the
aforementioned order-parameter spaceV = O(n)/O(n− 2).

In the case ofn = 2, and in this case only, the LGW Hamiltonian (2.4) has a
discrete symmetry, independent of the above O(n) × O(2) symmetry. This corresponds
to a permutation of the field variables, namely (iii) (a′x = ax, a′y = bx, b′x = ay, b′y = by) or
(a′x = by, a′y = ay, b′x = bx, b′y = ax).

3.3. Classification of topological defects

One property which can be determined solely from the topological considerations is the
classification of topological defects in the ordered state. Although we do not give the details
of the method (for these, see reference [51]), the point is that one can obtain all possible
topological defects together with their ‘topological quantum number’ from the knowledge
of its order-parameter spaceV by examining itsrth homotopy group,5r(V ).

Table 1. Order-parameter spaces and the associated homotopy groups for various continuous
spin systems in two dimensions.

V 50(V ) 51(V ) 52(V )

Defect — Line Point Instanton
CollinearXY S1 = SO(2) 0 Z 0
Collinear Heisenberg S2 0 0 Z
Non-collinearXY Z2 × S1 = O(2) Z2 Z 0
Non-collinear Heisenberg SO(3) 0 Z2 0

Topological defects play an essential role in the phase transition of two-dimensional
systems. Many two-dimensional phase transitions, such as the Kosterlitz–Thouless trans-
ition, are known to be ‘defect mediated’ [52]. The classification of topological defects in
the collinear and non-collineard = 2-dimensional magnets is given in table 1 for the cases
of XY (n = 2) and Heisenberg (n = 3) spins [3].

The non-collinear 2DXY systems, such as the triangular-latticeXY antiferromagnets
and the Josephson-junction arrays in a magnetic field, possess the standard Kosterlitz–
Thouless-type vortex characterized by the integral topological quantum number Z as well
as the chiral domain wall characterized by the two-valued topological quantum number
Z2. The vortex (point defect) is related to the continuousXY degrees of freedom via the
relation51(S1) = Z, while the domain wall (line defect) is related to the discrete chiral
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degrees of freedom via the relation50(Z2) = Z2. Since earlier MC work on the triangular
XY antiferromagnet by Miyashita and Shiba [2] and by Leeet al [53], and that on the
Josephson-junction array by Teitel and Jayaprakash [54], many numerical studies have been
made with special attention paid to how these two degrees of freedom order. While the
existence of a phase transition with a sharp specific-heat anomaly driven by the appearance
of the chiral long-range order has been established, the question of whether the spin and
the chirality order at the same temperature, or at two close but distinct temperatures, still
remains somewhat controversial [55, 56].

As was first observed by Kawamura and Miyashita [3], non-collinear Heisenberg
magnets, such as the triangular Heisenberg antiferromagnet, possess a peculiar vortex
characterized by its quantum number Z2 (the Z2 vortex), different in nature from the standard
Z vortex of theXY magnets. Although it is generally believed that the two-dimensional
Heisenberg model does not exhibit any phase transition at finite temperature [57], the
possible existence of a novel topological phase transition mediated by these Z2 vortices
in the two-dimensional triangular Heisenberg antiferromagnet was suggested by Kawamura
and Miyashita [3]. The predicted low-temperature phase is an exotic spin-liquid phase
where the two-point spin correlation decays exponentially and the spin-correlation length
remains finite. A quantity called the vorticity modulus, characterizing such exotic vortex
order not accompanying the conventional spin order, was proposed and calculated [58, 59].

In three spatial dimensions, our main concern here, point defects in two dimensions
appear as line defects. Hence, non-collinearXY magnets ind = 3 dimensions possess
Z-vortex lines in addition to the Z2 chiral domain walls, while the non-collinear Heisenberg
magnets possess Z2-vortex lines. Although it is possible and enlightening to envisage the
nature of the three-dimensional transitions also as defect mediated [60], we follow more
standard theoretical approaches in this article in which these topological defects do not show
up in an explicit way.

4. Theoretical analysis of the critical properties—renormalization-group analysis

In this section, I will review the theoretical analysis of the critical properties of non-collinear
transitions on the basis of several renormalization-group (RG) methods in some detail,
including ε = 4− d expansion, 1/n expansion andε = d − 2 expansion.

4.1. Mean-field approximation

Standard RG calculations such asε = 4− d and 1/n expansions are generally performed
on the basis of the soft-spin LGW Hamiltonian. Before entering into the RG analysis, it
may be instructive here to summarize the results of the standard mean-field approximation
applied to the LGW Hamiltonian, equation (2.4) [23].

When the quartic coupling constantv is positive and satisfies the inequalityv < 4u, a
continuous transition takes place atr = 0 between the paramagnetic and the non-collinear
states, characterized by

|a|2 = |b|2 = −r/(4u− v) a ⊥ b (0< v < 4u). (4.1a)

When v is negative, by contrast, there is a continuous transition atr = 0 between the
paramagnetic and the collinearly ordered sinusoidal states characterized by

|a|2+ |b|2 = −r/2u a ‖ b (v < 0). (4.1b)

Note that, in the sinusoidal case, the relative magnitude ofa andb is not determined: this
corresponds physically to the sliding degree of freedom of the spin-density wave.
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Figure 6. The mean-field phase diagram in the(u, v) plane of the LGW Hamiltonian (2.4),
whereu and v are two quartic coupling constants. On the linev = 4u, the transition to the
non-collinear state is mean-field tricritical.

Stability of the free energy requires the conditions

u > 0 v < 4u. (4.2)

When u < 0 or v > 4u, a higher-order (sixth-order) term is necessary to stabilize the
free energy, and the transition in such a case generally becomesfirst order. The mean-
field phase diagram in theu–v plane is summarized in figure 6. Continuous transitions are
characterized by the standard mean-field exponents,α = 0, β = 1/2 andγ = 1 etc, while
the mean-field tricritical exponentsα = 1/2, β = 1/4 andγ = 1 etc are realized along the
stability boundaryv = 4u. Of course, fluctuations generally change these conclusions, as
we shall see below.

4.2. ε = 4− d expansion

In this subsection, I will review the results of the RGε = 4− d expansion for the non-
collinear transition. Earlier attempts were made forXY (n = 2) helimagnets to O(ε2) by
Bak and Mukamel [4], and later by Barak and Walker [10], with special attention paid to
the paramagnetic–helimagnetic transition of the rare-earth metals Ho, Dy Tb. Similar O(ε2)

analysis for generaln-component helimagnets was carried out by Garel and Pfeuty with
special attention paid to the possible effect of commensurability on the helical transition
[5], and by Jones, Love and Moore [47] and by Bailin, Love and Moore [48] in the context
of the superfluidity transition of helium three. A fuller analysis in the light of a possible
new universality class was made by the present author [23]. More recently, a higher-order
calculation to O(ε3) was carried out by Antonenko, Sokolov and Varnashev [61]. Since
the results obtained were sometimes interpreted in different ways by these authors, I will
postpone the discussion of their physical implications to later subsections and will first
present the results based on references [23] and [61].
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4.2.1. The RG flow diagram, fixed points and critical exponents.Let us consider the LGW
Hamiltonian for generaln-component non-collinear magnets, equation (2.4). Its upper
critical dimension isd> = 4 and a standard RGε = 4− d expansion can be performed.
Near four dimensions, there are up tofour fixed points depending on the value ofn. Two
exist for all n: one is the trivial Gaussian field point located at the origin (u∗ = v∗ = 0),
which is always unstable against bothu- andv-perturbations; the other corresponds to the
conventional isotropic O(2n) Heisenberg fixed point at (u∗ > 0, v∗ = 0), which is stable
for sufficiently smalln. To describe the remaining fixed points, we consider four distinct
regimes for relatingn andd.

(I) n > nI(d) = 12+ 4
√

6− [(36+ 14
√

6)/3]ε + [ 137
150+ 91

300

√
6+ ( 13

5 + 47
60

√
6)ζ(3)]ε2

+ O(ε3) ' 21.8− 23.4ε + 7.1ε2+O(ε3).

Figure 7. Renormalization-group flows in the(u, v) plane obtained from theε = 4−d expansion
for the LGW Hamiltonian (2.4). Parts (a)–(d) correspond to the regimes I–IV specified in the
text. The hatched regions represent basins of attraction of the stable fixed point. In (a), the
line connecting the Gaussian fixed pointG and the unstable antichiral fixed pointC− is the
tricritical line corresponding to the separatrix between the two regions in the parameter space,
one associated with a continuous transition (the hatched region) and the other with a first-order
transition.

Whenn is sufficiently large to meet this condition, two new fixed points appear in the
non-collinear regionv > 0. They may be termedchiral , C+, andantichiral, C−, the former
being stable in accord with the RG flow sketched in figure 7(a). Whenn approachesnI(d),
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the chiral and antichiral fixed points coalesce at a point in the upper (u, v) half-plane and
become complex valued forn < nI(d). In the sinusoidal region,v < 0, no stable fixed
points are found.

(II) nI(d) > n > nII (d) = 12− 4
√

6− [(36− 14
√

6)/3]ε + [ 137
150 − 91

300

√
6+ ( 13

5 −
47
60

√
6)ζ(3)]ε2+O(ε3) ' 2.20− 0.57ε + 0.99ε2+O(ε3).
The RG flows are now as depicted in figure 7(b). Only the Gaussian and Heisenberg

fixed points are present and both are unstable. Consequently, the transition to both non-
collinear and sinusoidal phases is expected to be first order.

(III) nII (d) > n > nIII (d) = 2− ε + 5
24(6ζ(3)− 1)ε2+O(ε3) ' 2− ε + 1.3ε2+O(ε3).

In this regime, a new pair of fixed points appear in the sinusoidal region,v < 0, which
may be termedsinusoidal, S+, andantisinusoidal, S−. The corresponding flows resemble
those sketched in figure 7(c). The fixed pointS+ is the fixed point identified by Bak and
Mukamel [4], and by Garel and Pfeuty [5], as a physical fixed point governing theXY
(n = 2) helimagnets ford = 3. In the case ofn = 2, S+ coincides to O(ε) with the O(4)
fixed point,H , on thev = 0 axis, while it moves to the lower half-plane at higher order in
ε. Thus,S+ is the O(4)-like fixed point to O(ε2) in the sense that all exponents agree with
the isotropic O(4) exponents, but it is not exactly an O(4) fixed point as can be confirmed
by higher-order calculation [62]. In any case, this Bak and Mukamel fixed point is located
in the sinusoidal regionv < 0, and cannot be invoked to describe the non-collinear phase
transitions [10]. Asn → nIII (d), the sinusoidal fixed pointS+ approaches thev = 0 axis
and, atn = nIII (d), it meets the Heisenberg fixed pointH and exchanges stability with it.
In the non-collinear regionv > 0, no stable fixed point exists.

(IV) n > nIII (d).
As illustrated in figure 7(d), the unstable fixed pointS+ now lies above thev = 0 axis.

The Heisenberg fixed pointH is stable and governs the critical behaviour of regions of both
non-collinear and sinusoidal ordered behaviour.

Figure 8. Stability regions in the(n, d) plane, withε = 4− d, of fixed points accessible in the
non-collinear regionv > 0.

In view of the above four cases, one can see that, in the non-collinear regionv > 0, the
stable fixed point describing the non-collinear transition is either the chiral fixed pointC+,
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which is stable for sufficiently largen:

n > nI(d) = 21.8− 23.4ε + 7.1ε2+O(ε3) (4.3)

or the O(2n) Heisenberg fixed pointH , stable for sufficiently smalln < nIII (d). At
these stable fixed points, critical exponents can be calculated in the standard manner. The
exponents at the standard Heisenberg fixed point are well known, while the ones at the
chiral fixed point are new. To the lowest order, the exponentsγ andν at the chiral fixed
point were calculated as [23]

γ ≈ 2ν = 1+ n(n
2+ n+ 48)+ (n+ 4)(n− 3)

√
n2− 24n+ 48

4(n3+ 4n2− 24n+ 144)
ε +O(ε2). (4.4)

Theseγ andν are numerically smaller than the corresponding O(n) Heisenberg values. The
critical-point decay exponent to O(ε2) was calculated as [23]

η = n(n2+ n+ 48)+ (n+ 4)(n− 3)
√
n2− 24n+ 48

4(n3+ 4n2− 24n+ 144)
ε2+O(ε3). (4.5)

For the non-collinear regionv > 0, the facts concerning the stable fixed points are sum-
marized in figure 8.

The crucial question is that of what happens at the physically significant points,
i.e. whereε = 1 (d = 3) with n = 2 and 3. Unfortunately, these are rather far from
the ε → 0 limit and, thus, it is very difficult to obtain a truly definitive answer from the
ε-expansion with only a few terms. In fact, different authors gave different conjectures.
The existence of the chiral fixed pointC+ was first noticed for large enoughn (n > 21.8)
by Moore and co-workers in references [46] and [47] in the context of helium three, while
these authors claimed that the transition in the physical case (n = 3, d = 3) was first order
sincen = 3 was significantly smaller than 21.8. A detailed study of the chiral fixed point,
including theε-expansion expression for the stability boundarynI(d), was first carried out
in reference [23], where it was argued in view of the Monte Carlo results that the chiral
fixed point might remain stable down ton = 2 or 3 for d = 3. In contrast, Antonenko,
Sokolov and Varnashev claimed on the basis of their O(ε2) expression ofnI(d) and its
Borel–Pad́e resummation that the transition ford = 3 was first order for bothn = 2 and
n = 3 [61].

Instead of theε = 4 − d expansion where the dimensiond is expanded in powers
of ε, one can perform the RG loop expansion directly atd = 3. This was also done
by Antonenko and Sokolov to three-loop order, yielding results similar to those of the
ε-expansion calculation to the same order [63].

Note also that, if one makes the standardε-expansion fixingn atn = 2 or 3 (or any value
smaller than 21.8), the chiral fixed point can never be seen [4]. This is simply because the
ε-expansion method can detect only the type of fixed point which exists, stable or unstable,
in the ε → 0 limit.

In the special case ofXY (n = 2) sinusoidal orderingv < 0, one can give a non-
perturbative argument to identify the stable fixed point ford = 3, making use of the fact
that the system reduces to the decoupledXY models on the linev = −4u. In the XY
case, the fixed pointS− is located on thisv = −4u line and becomes the standardXY
fixed point (the O(2) Wilson–Fisher fixed point). One can then show, on the basis of
a non-perturbative argument, that thisXY fixed point is stable ford = 3 [64]. This is in
contrast to the behaviour obtained from the low-orderε-expansion as sketched in figure 7(c),
where the fixed pointS− is unstable [61, 62, 65]. Unfortunately, this discrepancy between
the low-orderε-expansion result and the non-perturbative result cannot be remedied even
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if one goes to higher order, say to O(ε3), and carries out a resummation procedure [62].
This observation gives us a warning that one should not place too much trust in the result
from the ε = 4− d expansion in some subtle cases, even when a relatively higher-order
calculation, say to O(ε3), was performed together with the resummation technique.

4.2.2. Chirality and other composite operators.In this subsection, we show how the
chirality, defined in section 1.2 as a quantity characterizing the non-collinear spin structure,
manifests itself in the RGε = 4− d expansion. As shown in section 1.2, the chirality
is a pseudoscalar in theXY case and an axial vector in the Heisenberg case. In accord
with the LGW Hamiltonian (2.4), one can also generalize the definition of the chirality
for generaln-component spins as a second-rank antisymmetric tensor variable defined by
κλ,ν = aλbµ − aµbλ (16 λ,µ 6 n), which hasn(n− 1)/2 independent components [23].

One may define a conjugate chiral field,hκ , which couples to a component of the
chirality via a term−hκκλ,ν in the LGW Hamiltonian. Application of the chiral field
hκ reduces the original symmetry of the Hamiltonian. The non-collinear structure is then
confined to the(λ, µ) plane and one of the two senses of the helix is selected. It is thus
thought that the application ofhκ causes a crossover from the fully chiral behaviour to the
standardXY behaviour.

If there is a stable fixed forhκ = 0—say, a chiral fixed point—this crossover is governed
by the chiral crossover exponentφκ associated with that fixed point. The singular part of
the free energy then has a scaling form [23]

fsing ≈ F
(
h

t1
,
hκ

tφκ

)
(4.6)

where h is an ordering field conjugate to the order parametera or b, 1 ≡ β + γ
is the gap exponent (the crossover exponent associated with the ordering field) and
t ≡ |(T − Tc)/Tc|. If the total chirality,κ̄ = −(∂f/∂hκ)hκ=0, and the chiral susceptibility,
χκ = −(∂2f/∂h2

κ)hκ=0, are characterized by critical exponentsβκ andγκ , the above scaling
gives βκ = 2− α − φκ and γκ = 2φκ − (2− α), and the chirality exponents satisfy the
relation

α + 2βκ + γκ = 2 (4.7)

together with the standard relationα + 2β + γ = 2.
In particular, in the regionn > nI(d) where the chiral fixed point is stable, the chiral

crossover exponentφκ has been calculated by means of theε = 4− d expansion as [23]

φκ = 1+ n
3+ 4n2+ 56n− 96+ (n2− 24)

√
n2− 24n+ 48

4(n3+ 4n2− 24n+ 144)
ε +O(ε2). (4.8)

Chirality, as defined here, is a quantityquadratic in spin variables. At the standard
O(n) Wilson–Fisher fixed point, there is onlyonecrossover exponent at quartic order in the
spins, namely, the standard anisotropy-crossover exponent. At the O(n) chiral fixed point,
as a reflection of richer underlying symmetry, there generally existfour different crossover
exponents even at the quadratic level, which physically representchirality, wavevector-
dependent anisotropy, uniform anisotropy and wavevector-dependent energyperturbations
[23]. Among them, the chiral crossover exponentφκ is the largest. In the particular
case ofXY (n = 2) spins, the discrete symmetry of the LGW Hamiltonian discussed in
section 3.2 (the symmetry (iii)) mixes the two otherwise independent composite operators,
uniform anisotropy and wavevector-dependent energy, and reduces this number from four
to three [66].
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4.2.3. Effects of commensurability.Under certain circumstances, the LGW Hamiltonian
(2.4) could have terms with a lower symmetry. An example may be seen in the 90◦ spiral
in helimagnets, where the turn angle is just equal to 90◦. In such a case, as first noticed by
Garel and Pfeuty [5], the LGW Hamiltonian has an additional quartic term of the form

w(a4+ b4). (4.9)

Garel and Pfeuty studied the relevance of this quartic term by means ofε = 4− d exp-
ansion, and concluded that this term was relevant in the physical case (d = 3, n = 2) and
changed the nature of the helical transition from continuous to first order [5]. In contrast, the
present author argued that this term was irrelevant in the (d = 3, n = 2) helical transition
and that even the 90◦ spiral exhibited a continuous transition ofn = 2 chiral universality
[45]. The difference arises from the fact that the fixed points identified in the two cases were
in fact different: the fixed point invoked by Garel and Pfeuty was the Bak and Mukamel
fixed point [4] while the one invoked by the present author was the chiral fixed point [23].

4.3. 1/n expansion

In the many-component limitn→∞, the LGW Hamiltonian (2.4) can be solved exactly for
arbitrary dimensionalityd. In the non-collinear casev > 0, on which we shall concentrate
in this subsection, one has a continuous transition characterized by the standard spherical-
model exponents,α = (d − 4)/(d − 2), β = 1/2, γ = 2ν = 2/(d − 2) for 2 < d < 4
[23]. (In the sinusoidal casev < 0, then→∞ behaviour is more complex; see reference
[67] for details.) Thus, in the non-collinear case, one can make the standard 1/n expansion
from the spherical model based on the LGW Hamiltonian (2.4). In the 1/n expansion,
the transition is always continuous for 2< d < 4: the first-order transition found in the
ε = 4− d expansion forn < nI(d) does not arise. Various exponents to leading order in
1/n were calculated as [23]

γ = 2

d − 2

{
1− 9

Sd

n

}
+O

(
1

n2

)
(4.10)

ν = 1

d − 2

{
1− 12

d − 1

d

Sd

n

}
+O

(
1

n2

)
(4.11)

etc, whereSd is defined by

Sd = sin{π(d − 2)/2}0(d − 1)/[2π{0(d/2)}2]. (4.12)

For n→∞ andε → 0, these results from 1/n expansion match the ones fromε-expansion
obtained at the chiral fixed point. On comparison with the results for the standard O(n)

Heisenberg exponents, one sees that bothγ andν for the non-collinear transition are smaller
than those for the collinear transition, a tendency consistent with the results of theε = 4−d
expansion.

The chiral crossover exponentφκ was calculated as [23]

φκ = 1

d − 2

{
1− 12

d − 1

d

Sd

n

}
+O

(
1

n2

)
. (4.13)

Comparison with the expression forγ shows that the chiral crossover exponent exceeds the
susceptibility exponentγ , although it is smaller than the gap exponent1. Note that the
same inequality is also satisfied within theε = 4− d expansion at the chiral fixed point.
This inequality is somewhat unusual since in usual cases crossover exponents have satisfied
the inequalityφ 6 γ . The complete spectrum of crossover exponents at the quadratic level
of spins was given in reference [23].
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A modified version of the 1/n expansion called the self-consistent screening
approximation, in which the standard 1/n expansion is extended to smaller values ofn

in a self-consistent manner, was formulated by Jolicoeur [68]. A continuous transition
characterized by exponents different from the standard O(n) exponents was also found,
supporting the existence of a chiral universality class.

4.4. What happens in the physically relevant cases whered = 3 andn = 2 or 3?

Now, in view of the results obtained from theε = 4− d and 1/n expansions presented in
the previous subsections, I wish to consider the physically relevant situation, whered = 3
andn = 2 or 3. The implication of the 1/n expansion or its extended version is simple:
a new type of continuous transition characterized by exponents different from the standard
O(n) exponents is suggested [23, 68]. The implications of theε = 4− d expansion are
more subtle, as was summarized in figure 8. In the regime where

n > nI(d) = 21.8− 23.4ε2+ 7.1ε3

there occurs a continuous transition governed by a new chiral fixed point. By contrast, for

nI(d) > n > nIII (d) = 2− ε + 1.3ε2

there is no stable fixed point in the non-collinear region and the transition is expected to
be first order. Finally, forn < nIII (d), the transition is governed by the standard O(2n)
Heisenberg fixed point.

At d = 3 andn = 2 or 3, this last possibility, i.e., the non-collinear transition governed
by the O(2n) Heisenberg fixed point, might be excluded, partly because all RG calculations
agree that the borderline valuenIII (d) lies below n = 2 [23, 61, 63], but also because
such O(2n) Heisenberg behaviour has not been seen in extensive Monte Carlo simulations
performed on the stacked-triangular antiferromagnets [21, 33–37] (Monte Carlo results will
be reviewed in the next section).

4.4.1. Continuous versus first order.Thus, the remaining question is that of whether the
transition is continuous, governed by the chiral fixed point, or is first order. Of course,
one can also imagine the borderline situation, i.e., the ‘tricritical’ case. Possible tricritical
behaviour will be discussed separately in the next subsection. Answering the above question
is equivalent to determining the fate of the boundary,nI(d), at d = 3. As mentioned
above, previous authors gave different opinions on this point. In reference [23] the present
author conjectured thatnI(3) 6 2 by invoking Monte Carlo results. Antonenko, Sokolov
and Varnashev claimed that the transition was first order on the basis of their Borel–Padé
estimate,nI(3) ∼ 3.39, which was slightly larger than the physical value,n = 3 [61]. The
series fornI(d) used in the resummation procedure, however, has only three terms, and
as we have seen in the previous subsection for theXY sinusoidal case, it is sometimes
dangerous to draw a definite conclusion on the basis of such a short series. At present,
it would be fair to say that no definite conclusion could be drawn from theε-expansion.
Naively, one may feel that the borderline value ofnI at the lowest order,nI(0) ' 21.8, is
large enough compared with the physical valuesn = 2 or 3 that one may safely conclude that
the transition in real systems is first order. However, the coefficient of the first correction
term, 23.4, is also large, which sets the scale of the numerics in this problem. For example,
the difference between the Borel–Padé estimate of reference [61]nI ' 3.3 and the physical
valuen = 3 is so small compared with this scale that one can hardly hope to get a reliable
answer, especially without knowledge of the asymptotic behaviour of the series.
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In this connection, it might be instructive to point out that an apparently similar situation
exists with respect to the phase transition of lattice superconductors (the U(1) lattice gauge
model) with ann-component order parameter, where the real system corresponds ton = 2
[68]. A RG ε = 4− d expansion calculation applied to this model yielded a stable fixed
point only for very largen > 183, below which there was no stable fixed point [69]. Since
this borderline value ofn ∼ 183 was so large compared with the physical valuen = 2, it was
initially concluded that the normal–superconducting transition of charged superconductors
should be first order [69]. However, it is now well established through duality analysis and
Monte Carlo simulation that then = 2 superconductor in fact shows a continuous transition
of the inverted-XY type [70, 71]. So, the low-orderε = 4− d expansion clearly gives
a wrong answer in this case. By contrast, 1/n expansion and its modified version (the
self-consistent screening approximation) correctly yielded a continuous transition [69, 72].

Presumably, the only way in which one could get a more or less reliable answer from
the RG loop expansion is to obtain the large-order behaviour of the series (the large-order
perturbation), possibly with a few more terms in the expansion [73]. We leave such a
calculation applied to the non-collinear transition to future studies.

It might also be important to point out here that, even when a stable fixed point exists as
in regime I, a first-order transition is still possible, depending on the microscopic parameters
of the system. This is simply due to the fact that even in the type of RG flow diagram
shown in figure 7(a) the flow could show a runaway only if the initial point representing a
particular microscopic system is locatedoutsidethe domain of attraction of the stable fixed
point. This means that, even if one has a few non-collinear systems exhibiting a first-order
transition, it does not necessarily exclude the possibility of a group of other non-collinear
magnets showing a continuous transition. The difference between these two types of system
is not of symmetry origin, but arises simply from the difference in certain non-universal
parameters.

One might then hope to get information about the location of the initial point of the RG
flows in the parameter space, by mapping the original microscopic spin Hamiltonian into the
LGW form. Of course, there usually remain some ambiguities in the procedure because such
a mapping also generates higher-order irrelevant terms in the LGW Hamiltonian (various
terms higher than sixth order ina andb), which modifies the initial values of the quartic
termsu and v somewhat through a few initial RG iterations. Anyway, such a mapping
performed in reference [23] shows that in both cases of stacked-triangular antiferromagnets
and helimagnets one hasv0/u0 = 4/3, whereu0 and v0 are the initial values of quartic
coupling constants. In a situation where the chiral fixed point exists at all, this point is likely
to lie inside the domain of the fixed point. Indeed, the ratiov/u at the chiral fixed point in
the borderline casen = nI is estimated from theε = 4−d expansion asv0/u0 = 3.11+O(ε).

By contrast, there are several models with the same chiral symmetry whose initial
point of the RG flow lies outside the domain of attraction of the chiral fixed point. An
example is the matrix O(2) model describingn = 2 non-collinear magnets, in which the
non-collinear structure is completely rigid. In this model, the above mapping yields the
initial point at v0/u0 = 4 [74], which is expected to lieoutside the domain of attraction
of the chiral fixed point. Here, recall that the linev/u = 4 corresponds to the stability
boundary in the mean-field approximation as shown in section 4.1, and is likely to lie
outside the domain of attraction of any stable fixed point. In fact, a first-order transition
was observed for the matrix O(2) model ind = 3 dimensions by Monte Carlo simulation
[75], consistently with the above argument. In the O(3)L×O(2)R matrix model representing
the completely rigidn = 3 non-collinear magnets, the above mapping yieldsv0/u0 = 3
[74]. For this matrix model ind = 3 dimensions, Kunz and Zumbach observed by means of
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Monte Carlo simulation a continuous transition with the unusual critical exponentν ∼ 0.48
[75]. For the stacked-triangular Heisenberg antiferromagnet, Dobry and Diep observed by
means of Monte Carlo simulation that, if one stiffened the non-collinear 120◦ structure by
adjusting some of the exchange constants, the nature of the transition apparently changed
significantly [76]. This observation might also be understandable within the above picture,
if one considers the initial point of the RG flow moving in the parameter space toward a
runaway region as the non-collinear 120◦ spin structure is stiffened.

Since there appears to be a possibility thatnI(d = 3) lies close to the physical values
n = 2 or 3, it may be interesting to examine what happens ifnI(3) is only very slightly larger
than the physical value ofn. In this case, although there is no stable fixed point in the strict
sense (the chiral fixed point becomes complex valued in this regime), RG flows behave as if
there were a stable fixed point for a long period of iterations. Thus, as illustrated in figure 9, a
‘shadow’ of the chiral fixed point attracts the RG flows up to a certain scale, but, eventually,
the flow escapes away from such a ‘pseudo-fixed point’ through a narrow channel in the
parameter space and shows a runaway signalling a first-order transition. Physically, this
means that the system exhibits a rather well-defined critical behaviour for a wide range of
temperature governed by the complex-valued chiral fixed point, but eventually, the deviation
from such critical behaviour sets in for sufficiently smallt , and the system exhibits a weak
first-order transition. This scenario is perhaps close to the ‘almost continuous transition’
scenario proposed by Zumbach [77, 78]. It was suggested there within the local potential
approximation of the RG that the transition ofn = 3 non-collinear magnets might be almost
continuous with well-defined pseudo-critical exponents.

4.4.2. Possible tricritical behaviours.A few authors have suggested that thed = 3 non-
collinear transition might be tricritical. More specifically,mean-fieldtricritical behaviour
was invoked in those studies [31, 32, 36]. It should be noticed, however, that the tricriticality
in general is not necessarily mean-field tricritical, particular when the LGW Hamiltonian has
more than one quartic coupling as in our model [79]. In this subsection, I will examine the

Figure 9. Renormalization-group flows in the(u, v) plane in the non-collinear regionv > 0,
expected whenn is only slightly smaller thannI(d). There remains a ‘shadow’ of the slightly
complex-valued chiral fixed point which attracts the flows up to a certain scale. Eventually, all
flows show runaway, signalling a weak first-order transition.
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possible tricritical behaviours in the non-collinear transition based on the LGW Hamiltonian
(2.4) and the picture derived fromε = 4− d expansion. Since the word ‘tricritical’ has
sometimes been used in the literature in a rather wide or vague sense, I will try to be
unambiguous here as regards what is meant by tricriticality. The two different ‘tricritical’
cases will be discussed.

The standard tricritical situation is concerned with a separatrix of the RG flows which
divides the two regions of the parameter space, one associated with a continuous transition
and the other with a first-order transition. In the case where the chiral fixed point is stable,
this separatrix is the line connecting the Gaussian fixed pointG and the antichiral fixed point
C−, the latter being the tricritical fixed point; see figure 7(a). By its definition, the tricritical
fixed point has one more relevant operator in addition to the temperature and the ordering
field. Thus, if the initial Hamiltonian happens to lie at a point on this separatrix, the RG flow
is attracted to the tricritical fixed pointC− and the system exhibits a tricritical behaviour
governed by the antichiral fixed pointC−. In order to reach this tricritical fixed point, one
has to tune one symmetry-unrelated microscopic parameter in such a way that the initial
point is just on the separatrix. Since the tricritical fixed point here is not the Gaussian fixed
point G, but the non-trivial antichiral fixed pointC−, the associated tricritical exponents
are not mean-field tricritical. As usual, a change in a certain non-universal parameter of
the system would induce either a first-order transition or a continuous transition governed
by the stable chiral fixed pointC+.

Figure 10. Renormalization-group flows in the(u, v) plane in the non-collinear regionv > 0
just atn = nI(d). The hatched regions represent basins of attraction of the stable fixed point.
The fixed pointC is doubly degenerate,C+ andC−. It is a non-trivial fixed point with a finite
domain of attraction in the(u, v) plane.

The second ‘tricritical’ case is concerned with the situation where the physical value of
n is just at the borderline valuen = nI(d) between the regimes of continuous and first-order
transitions. In this case, the RG flow diagram becomes as given in figure 10, where the two
fixed pointsC+ andC− coalesce at a point in the(u, v) plane. As can be seen in figure 10,
the resulting fixed point, which is again a highly non-trivial one, has a finite domain of
attraction in the(u, v) plane and attracts many microscopic Hamiltonians, in contrast to the
tricritical fixed point discussed above. Therefore, except for the degenerate nature of the
fixed point, the situation is essentially the same as in the case ofn > nI(d), in the sense
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that novel critical behaviour is expected for a variety of microscopic systems.
Note that, in both of the cases discussed above, the tricritical behaviour is highly non-

trivial, not mean-field tricritical. This is simply due to the fact that the tricritical fixed point
is a non-trivial one reflecting the existence of more than one quartic coupling constant in
the LGW Hamiltonian. Of course, the Gaussian fixed point responsible for the mean-field
tricritical behaviour always exists at the origin, but, to reach this fixed point, one has to
tune more than one symmetry-unrelated microscopic parameter, and the occurrence of such
a mean-field tricritical transition is highly unlikely [79].

4.5. ε = d − 2 expansion

In this subsection, I will review an alternative RG approach, an expansion from the lower
critical dimensiond< = 2. This method was first applied to the non-collinear transition
by Azaria, Delamotte and Jolicoeur for the Heisenberg spins (n = 3) [31]. Extension to
generaln-component spins was made by Azaria, Delamotte, Delduc and Jolicoeur [32], and
by the present author [80].

4.5.1. The non-linear sigma model.In contrast to theε = 4− d expansion, theε = d − 2
expansion is based on the non-linear sigma model which is written in terms of spin variables
of fixed length. In the case of non-collinear magnets withn-component spins, this may be
written in terms of two mutually orthogonaln-component vector fieldsa andb as

H = 1

2T

[
(∇µa)2+ (∇µb)2+ r

∑
16i<j6n

{∇µ(aibj − ajbi)}2
]

(4.14a)

with the constraints

|a(r)| = |b(r)| = 1 a(r) · b(r) = 0 (4.14b)

whereT is a temperature andr is a coupling-constant ratio. One can easily check that
the above Hamiltonian satisfies the same O(n)×O(2) symmetry as the LGW Hamiltonian
(2.4). Unlike the case of equation (2.4), the non-collinear structure, i.e., an orthogonal frame
spanned by the two vectorsa andb, is completely rigid here. It is not necessarily obvious
whether this idealization changes the essential physics ind = 3 dimensions (recall our
discussion concerning the stiffness of the non-collinear structure in the previous subsection
based on the LGW Hamiltonian).

4.5.2. Fixed points and exponents.The standardε = d − 2 expansion applied to the
Hamiltonian (4.14) yields a stable fixed point characterized by the exponents [32, 80]

ν = ε − 1

2

6n3− 27n2+ 32n− 12

(n− 2)3(2n− 3)
ε2+O(ε3) (4.15)

η = 3n2− 10n+ 9

2(n− 2)3
ε +O(ε2). (4.16)

This fixed point is stable for anyn > 2 andd > 2. In the limit n → 2, the fixed-point
temperature tends to infinity and theε = d−2 expansion becomes meaningless. Azariaet al
observed that, in the particular case of Heisenberg spins (n = 3), the fixed point obtained
was nothing but the standard O(4) Wilson–Fisher fixed point [31]. Note that this O(4) fixed
point is different in nature from the O(4)-like fixed point obtained by Bak and Mukamel
in the ε = 4− d expansion analysis of theXY (n = 2) non-collinear magnets: the former
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fixed point has no counterpart in theε = 4− d expansion [4]. By contrast, forn > 3, the
fixed point obtained by means of theε = d − 2 expansion is a new one,not the standard
Wilson–Fisher fixed point. Indeed, for large enoughn, various exponents reduce to those
obtained by means of the 1/n expansion based on the LGW Hamiltonian [23], naturally
fitting into the chiral-fixed-point picture obtained via theε = 4− d and 1/n expansions.

As already mentioned, in the Heisenberg (n = 3) case,ε = d − 2 expansion predicts
that the symmetry is dynamically restored, yielding the standard O(4) critical behaviour
which has never been seen in theε = 4− d expansion. On the basis of this observation,
Azaria et al claimed that the (n = 3, d = 3) non-collinear transition should be of standard
O(4) universality [31, 32]. They further speculated that the transition could also be first
order or mean-field tricritical, depending on the microscopic parameters of the system.
(Note, however, that theε = d − 2 expansion itself yielded neither first-order nor mean-
field tricritical behaviour.) So, in the ‘non-universality’ scenario of reference [31], the
non-collinear transition of Heisenberg systems is either O(4), mean-field tricritical, or first
order.

4.5.3. Discussion. In fact, as will be shown in the next section, recent extensive Monte
Carlo simulations on the stacked-triangular Heisenberg antiferromagnets now rule out the
possibility of O(4)-like critical behaviour [31, 33, 35, 37]. Thus, doubt has been cast by
several authors on the validity of theε = d − 2 method applied to this problem. In the
Heisenberg case (n = 3), a different interpretation of the O(4) behaviour obtained by means
of the ε = d − 2 expansion had already been given in reference [80]: it was argued there
that the O(4) fixed point forn = 3 was spurious, arising from the inability of the method to
deal with the crucially important non-perturbative effects associated with the vortex degrees
of freedom, which reflects the non-trivial topological structure of the order-parameter space,
51(V = SO(3)) = Z2. Essentially the same criticism was also made by Kunz and Zumbach,
and by Zumbach in references [75] and [81].

By analysing the properties of another generalization of then = 3 model, the
O(n)×O(n−1) non-linear sigma model, David and Jolicoeur proposed a scenario in which
Azaria’s O(4) fixed point with enlarged symmetry played no role due to the appearance of a
first-order line in the phase diagram [82]. (Note that the ‘principal chiral fixed point’ quoted
by these authors corresponds to the O(4) fixed point with enlarged symmetry,not the chiral
fixed point in the present article.) On the other hand, on the basis of their Monte Carlo
study of a modified stacked-triangular Heisenberg antiferromagnet in which the interaction
is modified to yield the rigid 120◦ structure, Dobry and Diep suggested that the non-linear
sigma model used by Azariaet al itself might already be inappropriate for modelling the
original stacked-triangular Heisenberg antiferromagnet [76].

While the above criticisms apply specifically to then = 3 non-collinear magnets, it
should also be mentioned that there has been controversy concerning the validity of the
ε = d − 2 expansion method even in the simplest case of simple O(n) ferromagnets [83].
Anyway, it now appears clear for the present problem that theε = d−2 expansion method
is problematic, at least in the case ofn = 3. Special care has to be taken in applying this
method to the system with non-trivial internal structure in its order-parameter space, like
the non-collinear magnets.

4.6. Further generalization of non-collinear transitions

So far, we have limited our discussion to the magnets with non-collinear butcoplanar
spin order. On the other hand, in some cases,non-coplanarspin orderings that are three
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dimensional in spin space could appear. An example is a triple-Q ordering as illustrated in
figure 11. One can further generalize the situation tom-dimensional spin order in isotropic
n-spin space withm 6 n. Them = 1 case represents the collinear spin order, while the
m = 2 case represents the non-collinear but coplanar spin order discussed so far. Then,
one can naturally imagine the possible existence of hyperuniversality series characterized
by two integers (m, n).

Theoretical analysis of such non-coplanar criticality was first carried out in 1990 by the
present author on the basis of a symmetry argument, and RGε = 4−d and 1/n expansions
[84]. An appropriate LGW Hamiltonian with the O(m)×O(n) symmetry is given by

HLGW = 1

2

∑
α

(∇φα)2+
1

2
r
∑
α

φ2
α +

1

4!
u

(∑
α

φ2
α

)2

+ 1

4!
v
∑
〈αβ〉
{(φα · φβ)2− φ2

αφ
2
β}

(4.17)

where theφα (16 α 6 m) arem sets ofn-component vectors. The condition

0< v <
2m

m− 1
u (4.18)

is required by the non-coplanarity of the ordering and the boundedness of the free energy.
The ε = 4− d expansion applied to (4.17) yields a generalized chiral fixed point in the
non-collinear regionv > 0, which is stable for [84]

n > nI(d) = 5m+ 2+ 2
√

6(m+ 2)(m− 1)

−
{

5m+ 2+ 25m2+ 22m− 32

2
√

6(m+ 2)(m− 1)

}
ε +O(ε2). (4.19)

For the coplanar (m = 2) case, this reduces to the previous result (4.3), while in the
non-coplanar (m = 3) case, this gives

n > nc(d) = 32.5− 33.7ε +O(ε2). (4.20)

Again, it is not easy to tell from this expression whether the non-coplanar (m = 3) chiral
fixed point remains stable in the physical case, whered = 3 andn = 3.

Figure 11. An illustration of non-coplanar spin orderings like the ones realized in triple-Q
structures in type-I (left) and in type-II (right) fcc antiferromagnets.
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The exponentsγ andν at this generalized chiral fixed point were calculated as [84]

γ ≈ 2ν = 1+ 1

4
Bmn(Cmn +Dmn

√
Rmn)ε +O(ε2)

B−1
mn = (mn+ 8)(m+ n− 8)2+ 24(m− 1)(n− 1)(m+ n− 2)

Cmn = mn(m+ n)2+ 8mn(m+ n)− 22(m+ n)2+ 88mn− 32(m+ n)+ 152

Dmn = mn(m+ n)− 10(m+ n)+ 4mn− 4

Rmn = (m+ n− 8)2− 12(m− 1)(n− 1).

(4.21)

The 1/n expansion applied to (4.17) yields a continuous transition characterized by the
exponents [84]

γ = 2

d − 2

{
1− 3(m+ 1)

Sd

n

}
+O

(
1

n2

)
(4.22)

ν = 1

d − 2

{
1− 4(m+ 1)

d − 1

d

Sd

n

}
+O

(
1

n2

)
(4.23)

where Sd was defined by (4.12). Further details including the expression for the chiral
crossover exponent were given in reference [84]. (Some of theε = 4 − d expansion
results at the lowest order were also reported in reference [85], in apparent ignorance of
reference [84].) Anyway, if this generalized chiral fixed point remains stable ford = 3,
the associated critical behaviour is most probably novel. Thus, the possible existence of
a hyperseries of universality classes characterized by two integersm andn was proposed
in reference [84], where the special case withm = 1 corresponds to the standard O(n)
Wilson–Fisher universality and the case withm = 2 corresponds to the standard chiral
universality.

One possible example of such non-coplanar criticality was studied by Reimers, Greedan
and Bj̈orgvinsson for the pyrochlore antiferromagnet FeF3 both by means of a neutron
diffraction experiment and by Monte Carlo simulation [86]. The reported exponent values
were quite unusual,α = 0.6(1), β = 0.18(2), γ = 1.1(1) and ν = 0.38(2), although
Mailhot and Plumer argued that the same data were also not inconsistent with a first-order
transition [87].

5. Monte Carlo simulations

5.1. Stacked-triangular antiferromagnets

In this section, I wish to review the results of Monte Carlo simulations for the 3DXY
and Heisenberg antiferromagnets on a stacked-triangular lattice. The Monte Carlo method
enables us to study theXY and Heisenberg systems directly in three dimensions. Thus, if
one could control finite-size effects and statistical errors intrinsic to the method, one could
get useful information which might serve to test various theoretical proposals.

Partly for simplicity and partly to get a wide critical regime, most of the extensive Monte
Carlo simulations on the stacked-triangular antiferromagnets were performed on the nearest-
neighbour Hamiltonian (2.1) withJ = J ′. Earlier work by the present author simulated
lattices up toL = 603 both for XY and Heisenberg models on the basis of the conventional
method [21], while more recent simulations on theXY model by Plumer and Mailhot [36],
by Boubcheur, Loison and Diep [34], and those on the Heisenberg model by Bhattacharya,
Billoire, Lacaze and Jolicoeur [33], by Mailhot, Plumer and Caillé [37], and by Loison and
Diep [35] used the histogram technique, the largest lattice sizes beingL = 33–48. As an
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(a)

(b)

Figure 12. The temperature and size dependence of the specific heat calculated by Monte
Carlo simulation of the stacked-triangular (a)XY and (b) Heisenberg antiferromagnets withL3

spins. The data are taken from reference [21]. The insets exhibit the size dependence of the
specific-heat peak.

example, the temperature and size dependence of the specific heat calculated in reference
[21] is reproduced in figure 12. In the numerical sense, the results obtained by these
independent simulations agreed with each other except for a small deviation remaining in
some exponents in theXY case. In all such studies a continuous transition was observed
for both theXY and the Heisenberg cases, except in the recent simulation by Plumer and
Mailhot on aquasi-one-dimensionalstacked-triangularXY antiferromagnet [88].
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Table 2. Critical exponents, amplitude ratios and transition temperatures as determined by
several Monte Carlo simulations for the stacked-triangularXY antiferromagnet withJ = J ′.
The maximum lattice size used in each simulation is also shown. The corresponding values of
the standardXY , O(4) and mean-field tricritical universality classes are also shown.

Kawamura Plumer and Mailhot Boubcheuret al Mean-field
[21] [36] [34] XY O(4) tricritical

Maximum size 603 333 423

Tc/J 1.458(2) 1.4584(6) 1.4580(5)
α 0.34(6) 0.46(10) 0.46(10) −0.008 −0.22 0.5
β 0.253(10) 0.24(2) 0.25(2) 0.35 0.39 0.25
γ 1.13(5) 1.03(4) 1.15(5) 1.316 1.47 1
ν 0.54(2) 0.50(1) 0.48(2) 0.669 0.74 0.5
A+/A− 0.36(20) — — 0.99 — 0
βκ 0.45(2) 0.38(2) — — —
γκ 0.77(5) 0.90(9) — — —
νκ 0.55(2) 0.55(1) — — —

Table 3. Critical exponents, amplitude ratios and transition temperatures as determined by
several Monte Carlo simulations for the stacked-triangular Heisenberg antiferromagnet with
J = J ′. The maximum lattice size used in each simulation is also shown. The corresponding
values of the standard Heisenberg, O(4) and mean-field tricritical universality classes are also
shown.

Kawamura Bhattacharyaet al Mailhot et al Loison and Diep Mean-field
[21] [33] [37] [35] Heisenberg O(4) tricritical

Maximum size 603 482 × 32 363 363

Tc/J 0.958(4) 0.9576(2) 0.9577(2) —
α 0.24(8) — — — −0.116 −0.22 0.5
β 0.30(2) 0.289(10) 0.285(11) 0.28(2) 0.36 0.39 0.25
γ 1.17(7) 1.176(20) 1.185(3) 1.25(3) 1.387 1.47 1
ν 0.59(20) 0.585(9) 0.586(8) 0.59(1) 0.705 0.74 0.5
A+/A− 0.54(20) — — — 1.36 — 0
βκ 0.55(4) — 0.50(2) — — — 0.5
γκ 0.72(8) — 0.82(4) — — — 0.5
νκ 0.60(3) — 0.608(12) — — — 0.5

The values of the critical exponents, specific-heat amplitude ratios and transition
temperatures reported by these authors are summarized in tables 2 and 3 for both cases ofXY
and Heisenberg models, and are compared with the corresponding values for unfrustrated
XY and Heisenberg ferromagnets, for the standard O(4) behaviour and for the mean-field
tricritical behaviour. One can immediately see that the exponent values determined by
these simulations differ significantly from the unfrustratedXY or Heisenberg values. One
can also see that the reported exponents are incompatible with the O(4) exponents in both
the XY and the Heisenberg cases which were predicted by Bak and Mukamel (in theXY
case) [4] and by Azariaet al (in the Heisenberg case) [31]. Indeed, the O(4) singularity is
weaker than that of the standardXY and Heisenberg singularity, contrary to the observed
tendency. On the basis of these findings, one may now rule out the standard O(4)-like
critical behaviour in both cases ofXY and Heisenberg magnets. In the Heisenberg case,
the reported exponents are also inconsistent with the mean-field tricritical values suggested
by Azaria et al [31], and give support to the claim that then = 3 non-collinear transition
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is indeed of the newn = 3 chiral universality.
In the XY case, one sees from the table that the reported exponent values are not much

different from the mean-field tricritical values. Furthermore, a closer look reveals that there
remain small differences between the exponent values reported by the three different groups.
All agree concerning the exponentβ, which comes out at around 0.25. By contrast, for
the exponentγ , the reported values are scattered: 1.03± 0.04 (reference [36]), 1.13± 0.05
(reference [21]) and 1.15± 0.05 (reference [34]). The reason for this deviation is not clear.
In fact, the exponent values reported by Plumer and Mailhot in reference [36] were very
close to the mean-field tricritical values, and these authors suggested that the transition in
the XY case might indeed be mean-field tricritical. In contrast to this, finite-size scaling
analysis in reference [21] favoured the non-trivial exponents, rather than the mean-field
tricritical exponents.

Meanwhile, larger deviations from the mean-field values were observed in the chirality
exponentsβκ and γκ and the specific-heat amplitude ratioA+/A−. In the mean-field
tricritical case governed by the Gaussian fixed point, these values should beβκ = 0.5,
γκ = 0.5 and A+/A− = 0, while the Monte Carlo results of reference [21] yielded
βκ = 0.45± 0.02, γκ = 0.77± 0.05 andA+/A− = 0.36± 0.2 in the XY case, and
βκ = 0.55± 0.04, γκ = 0.72± 0.08 andA+/A− = 0.54± 0.2 in the Heisenberg case.
These non-trivial values of the chirality exponents and the specific-heat amplitude ratios
appear to be hard to explain on the basis of the mean-field tricritical scenario. The observed
chirality exponents satisfy the scaling relation (4.7) within the error bars.

In reference [36], Plumer and Mailhot suggested the possibility that the chirality and
the spin are decoupled and order at slightly different temperatures,Tc 6= T (κ)c , and/or with
mutually different correlation-length exponents,ν 6= νκ . From the standard theory of critical
phenomena, however, this is a rather unlikely situation in the present 3D problem for the
following reason. If the chirality were decoupled from the spin and exhibited an independent
transition, the criticality associated with this chirality transition would be expected to be
of 3D Ising universality, which should then giveβκ ∼ 0.324, γκ ∼ 1.239 andνκ ∼ 0.629
etc. However, this clearly contradicts the Monte Carlo results. Even if the criticality of the
decoupled chirality transition were to differ from the standard Ising one for some unknown
reason, the chiral susceptibility exponentγκ in such a case should definitely be larger than
unity, which again seems hard to reconcile with the Monte Carlo resultsγκ = 0.77± 0.05
[21] or γκ = 0.90± 0.09 [36]. Rather, the Monte Carlo observation thatTc ∼ T (κ)c and
ν ∼ νκ , together with the non-Ising values of the chirality exponents, constitutes a clear
indication that the spin and the chirality arenot decoupled and that the chirality behaves
as a composite operator of the order parameter, the spin. In fact, this is just the scenario
suggested on the basis of the RG analysis in section 4.2 [23]. Note that, in such a situation,
the chirality exponents are generally non-Ising and the chiral susceptibility exponentγκ
could be less than unity, in accord with the Monte Carlo results. As long as the spin
and the chirality are not decoupled at the transition, the observed non-trivial values of the
chirality exponents are unambiguous indications that the transition here isnot mean-field
tricritical.

Monte Carlo simulation is performed for finite systems (in the present case,L 6 603),
and one cannot completely rule out the possibility that an indication of a first-order
transition eventually develops for still larger lattices. Mailhot and Plumer recently performed
a histogram Monte Carlo simulation of a quasi-one-dimensional stacked-triangularXY
antiferromagnet in which the interplane interaction is much stronger than the intraplane
interaction (J ′ = 10J ) for lattice sizes up toL = 333, and claimed that the transition was
weakly first order [88]. More specifically, these authors estimated the transition temperature
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by two different methods which gave somewhat different estimates ofTc (about 0.5%
difference). If a higher estimate ofTc was employed in the fit, finite-size scaling of the data
was suggestive of a first-order transition, while if a lower estimate ofTc was employed,
it was suggestive of a continuous transition with the exponents close to those of previous
work [36]. In view of the rather large uncertainty in their estimate ofTc as well as the high
sensitivity of the results to the assumedTc-value, and also of the fact that they never observed
a double-peak structure in the energy histogram characteristic of a first-order transition [88],
the claimed first-order nature of the transition seems not necessarily conclusive. One should
also be careful that, in highly anisotropic systems like the one studied in reference [88],
there generally occurs a dimensional crossover which might complicate the data analysis
particularly when the system size is not large enough.

5.2. Helimagnets

While the stacked-triangular antiferromagnets are the best-studied model, there have been
a few Monte Carlo investigations of 3D helimagnets (spiral magnets). Diep simulated a
helimagnetic model with competing nearest- and next-nearest-neighbour antiferromagnetic
interactions on a body-centred-tetragonal lattice under periodic boundary conditions [89].
In the case of Heisenberg spins, Diep observed a continuous transition characterized by the
exponentsα = 0.32± 0.03 andν = 0.57± 0.02, which were not far from then = 3 chiral
values obtained for the stacked-triangular Heisenberg antiferromagnet. In the case ofXY
spins, he observed either two successive continuous transitions or a first-order transition,
depending on the microscopic parameters of the model.

One potential problem exists, however, in the simulation of helimagnets of this type.
That is, unlike the 120◦ spin structure in the triangular antiferromagnets, the pitch of
a magnetic spiral is generallytemperature dependentand is incommensuratewith the
underlying lattice. Therefore, imposed periodic boundary conditions, even if they are chosen
to accommodate the ground-state spin configuration without mismatch, generally cause a
mismatch aroundTc causing an artificial ‘stress’ on the helical spin structure. This could
have a significant effect on the nature of the phase transition [90], particularly when the
lattice size is not large enough compared with the spiral pitch.

5.3. Matrix models

Finally, several matrix models expected to model non-collinear magnets were also studied
by Monte Carlo simulations. The Hamiltonian of these matrix models may be given by

H = −J
∑
〈ij〉

Tr(OT
i Oj ) (5.1)

whereOi is a matrix variable at theith site of a simple cubic lattice andJ > 0 is the
ferromagnetic nearest-neighbour coupling. Relevant to our present study is the matrix O(2)
model representing the non-collinearXY magnets, where the matrix variableOi is a 2× 2
orthogonal matrix, and the matrix O(3)L × O(2)R model, representing the non-collinear
Heisenberg magnets, whereOi is a 3× 2 matrix written in terms of two orthogonal unit
three-vectors,a andb, as (a, b).

In the O(2) case, the model has an O(2)L ×O(2)R symmetry and is also equivalent to
the coupled Ising–XY model of the form

H = −J
∑
〈ij〉
(1+ σiσj ) cos(θi − θj ) (5.2)
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whereσi = ±1 is an Ising variable andθi = [0, 2π) is an angle variable of theXY spin.
As previously mentioned, these matrix models represent completely rigid non-collinear

spin structures. The analysis in section 4 suggests that these models, particularly the matrix
O(2)model, are likely to exhibit a first-order transition since the initial point of the associated
RG flow might be located in the runaway region in the parameter space. Indeed, Monte
Carlo simulations by Kunz and Zumbach [75], and by Dobry and Diep [76], based on these
and related models, revealed that the 3D matrix models exhibited a first-order transition, or
behaviour close to it.

As pointed out by Zumbach [78], the matrix O(2) model shows an interesting transition
behavioureven at the mean-field level, significantly different from that of stacked-triangular
antiferromagnets with non-rigid non-collinear spin structures: it exhibits a mean-field tri-
critical transition with the exponentsα = 1/2, β = 1/4 and γ = 1, which should be
contrasted with the ordinary mean-field exponentsα = 0, β = 1/2 andγ = 1 observed
when the mean-field approximation is applied to theXY and Heisenberg stacked-triangular
antiferromagnets. By contrast, the O(3)L × O(2)R matrix model modelling the rigid
Heisenberg non-collinear magnets exhibits an ordinary mean-field transition at the mean-
field level [78]. These observations suggest that the nature of the transition of the matrix
models or the coupled Ising–XY model may not always be the same as those of the original
non-collinear magnets with non-rigid non-collinear spin structures, even when they share
the same symmetry.

6. Experiments

In this section, we briefly review the recent experimental results both on (a) stacked-
triangular antiferromagnets and (b) helimagnets (spiral magnets). Since some review articles
with emphasis on experimental work are already available [42, 44], I summarize here some
of the main features and highlight the points of interest.

Table 4. Critical exponents and amplitude ratios determined by experiments on several stacked-
triangularXY antiferromagnets. The values given by several theories are also shown.

α β γ ν A+/A−

CsMnBr3 0.39(9) [26] 0.22(2) [24] 1.10(5) [25] 0.57(3) [25] 0.19(10) [26]
0.40(5) [27] 0.25(1) [25] 1.01(8) [24] 0.54(3) [24] 0.32(20) [27]

0.21(2) [24]
0.24(2) [39]

CsNiCl3 atH = Hm 0.37(8) [91] 0.243(5) [93] — — 0.30(11) [91]
0.342(5) [92]

CsMnI3 atH = Hm 0.34(6) [138] — — — 0.31(8) [92]

XY −0.008 0.35 1.316 0.669 0.99

n = 2 chiral [21] 0.34(6) 0.253(10) 1.13(5) 0.54(2) 0.36(20)

O(4) −0.22 0.39 1.47 0.74 —

Mean-field 0.5 0.25 1.0 0.5 0
tricritical
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Figure 13. The specific heat versus the reduced temperature|t | for the stacked-triangularXY
antiferromagnet CsMnBr3, taken from reference [27]. The inset shows the specific heat in a
linear representation.

Figure 14. The magnetic Bragg intensity of the(1/3, 1/3, 1) reflection measured by means of
neutron diffraction for the stacked-triangularXY antiferromagnet CsMnBr3 plotted versus the
reduced temperature. The data are taken from reference [25].

6.1. Stacked-triangular antiferromagnets

The best-studied material among the stacked-triangularXY antiferromagnets is CsMnBr3,
for which specific-heat measurements (exponentα and amplitude ratioA+/A−) [26, 27]
and neutron scattering measurements (exponentsβ, γ and ν) [24, 25, 39] were made
independently by several groups. The reported values of the exponents and the specific-
heat amplitude ratios are summarized in table 4. As an example, the specific-heat data
reported in reference [27] and the sublattice-magnetization data reported in reference [25]
are reproduced in figures 13 and 14, respectively. All of the authors reported a continuous
transition. In particular, high-precision specific-heat measurements gave a stringent upper



4740 H Kawamura

limit for the possible latent heat, demonstrating the continuous nature of the transition.
Another example of a well-studiedn = 2 chiral system is CsNiCl3 under high magnetic
fields, for which the measured exponents are also included in table 4 [91–93]. Although
CsNiCl3 is a weakly Ising-like magnet, under external fields higher than a certain value
Hm corresponding to the multicritical point, it exhibits a single transition directly from
the paramagnetic state to an ‘umbrella-type’ non-collinearly ordered state with non-trivial
chirality. This is caused because applied fields generate an effective planar anisotropy
perpendicular to the field, which cancels and exceeds the intrinsic axial anisotropy. Overall,
as can be seen from table 4, the experimental results support the chiral-universality
prediction. It should also be noticed that the measured exponentsβ, γ and ν are not
far from the mean-field tricritical values, although the observedν marginally favours the
non-trivial n = 2 chiral value. By contrast, the specific-heat exponentα and the amplitude
ratioA+/A− more or less favour the chiral-universality values over the mean-field tricritical
values.

Table 5. Critical exponents and amplitude ratios determined by experiments on several stacked-
triangular Heisenberg (or nearly Heisenberg) antiferromagnets. The values given by several
theories are also shown. Note that VCl2, VBr2 and RbNiCl3 possess weak Ising-like anisotropy,
which leads to a small splitting of the transition temperature (35.80 K and 35.88 K in the case of
VCl2; 11.11 K and 11.25 K in the case of RbNiCl3). Since the fully isotropic critical behaviour
should be interrupted due to the anisotropy sufficiently close toTN , one should note that the
reported exponents may be affected somewhat by the crossover effect.

α β γ ν A+/A−

VCl2 — 0.20(2) [29] 1.05(3) [29] 0.62(5) [29] —

VBr2 0.30(5) [30] — — — 0.60(5) [30]
0.59(5) and 0.28(2) [28]

RbNiCl3 0.06(4) [96] 0.25–0.30 [94] — — —
0.27(1) and 0.28(1) [95]

CsNiCl3 0.25(8) [91] 0.28(3) [93] — — 0.52(10) [91]
atH = Hm 0.23(4) [92]

CsNiCl3 0.28(6) [138] — — — 0.42(10) [92]
atH = Hm
Heisenberg −0.116 0.36 1.387 0.705 1.36

n = 3 chiral [21] 0.24(8) 0.30(2) 1.17(7) 0.59(2) 0.54(20)

O(4) −0.22 0.39 1.47 0.74 —

Mean-field 0.5 0.25 1 0.5 0
tricritical

Relatively well-studied Heisenberg-like stacked-triangular antiferromagnets include
VCl2 [29], VBr2 [28, 30], RbNiCl3 [94–96] as well as CsNiCl3 in an external field
corresponding to the multicritical point (H = Hm) [91–93]. Note that the former three
compounds are nearly Heisenberg systems, possessing a weak axial magnetic anisotropy.
The measured values of the exponents and the specific-heat amplitude ratios are summarized
in table 5. Except for a relatively large deviation observed in the exponentsβ and γ for
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VCl2, the results are consistent withn = 3 chiral values. Since the high-precision specific-
heat measurement for VBr2 yielded results in good agreement with the theoreticaln = 3
chiral values, it might be interesting to examine the critical properties of VBr2 by means of
neutron scattering to measureβ, γ andν.

Other stacked-triangularXY antiferromagnets that have been studied include RbMnBr3

and CsCuCl3. Unlike those of the compounds quoted above, the lattice structures of these
compounds aroundTc are distorted from the perfect simple hexagonal lattice. RbMnBr3

exhibits an incommensurate spin order with its turn angle equal to 128◦ [97], presumably
due to its distorted lattice structure [45, 46]. Concerning the critical properties associated
with the incommensurate spin order of RbMnBr3, a theoretical argument was given that
the critical behaviour will be the same chiral one as for undistorted CsMnBr3 if the lattice
deformation of RbMnBr3 is of a certain type [45]. Indeed, for RbMnBr3, Kato et al
gaveα = 0.42± 0.16, α′ = 0.22± 0.06 andA+/A− = 0.30± 0.02 from birefringence
measurements [98], andβ = 0.28± 0.02 from neutron diffraction measurements [99], in
reasonable agreement with the expectedn = 2 chiral values.

By contrast, the lattice structure of CsCuCl3 is distorted such that the anisotropic
Dzyaloshinski–Moriya interaction−Dij · Si × Sj arises between the neighbouring spins
along thec-axis, the associatedD-vector pointing in directions slightly off thec-axis
(reference [100]). Along thec-axis, the directions of theseD-vectors rotate around the
c-axis with the period of six lattice spacings. If theD-vector were precisely parallel with
the c-axis, the spin symmetry would be chiral, i.e. O(2) = Z2×SO(2), where Z2 relates to
the chiral degeneracy associated with the non-collinear spin structurein the triangular layer.
However, the canting of theD-vector from thec-axis reduces the spin symmetry from the
perfect chiral one to a lower one, i.e., only Z2 associated with the spin inversion. Thus,
a crossover from then = 2 chiral critical behaviour is expected in its magnetic transition
in the immediate vicinity ofTc [44]. In that sense, CsCuCl3 is not an ideal material for
studying the chiral criticality.

The magnetic phase transition of CsCuCl3 was recently studied by means of neutron
diffraction by Mekata et al [101] and by Schotteet al [102], and by specific-heat
measurements by Weberet al [103]. Mekataet al obtainedβ = 0.25± 0.01 while Schotte
et al [102] obtainedβ = 0.23± 0.02; these values are close to then = 2 chiral value
and that for CsMnBr3. By contrast, Weberet al observed over the temperature range
10−3 < |t | < 5× 10−2 a power-law scaling behaviour in the specific heat characterized by
α = 0.35±0.05 andA+/A− = 0.29±0.05, close to then = 2 chiral values, but observed a
deviation from this scaling behaviour nearer toTc. This deviation was interpreted by these
authors as a sign of a first-order transition. It was further suggested that this might indicate
the failure of chiral universality. It should be noticed, however, that, due to the reduction of
spin symmetry caused by the canting of itsD-vector from thec-axis, CsCuCl3 is not an ideal
material for studying then = 2 chiral criticality, and the observed deviation from then = 2
chiral critical behaviour might possibly be caused by the expected crossover effect, not
being an intrinsic property of an idealn = 2 chiral magnet. The experimental observation
reported in reference [103] that external fields applied along thec-axis made the deviation
from the ideal chiral critical behaviour less pronounced can naturally be understood on the
basis of such a crossover picture, because thec-axis field tends to confine the non-collinear
spin structure in a plane orthogonal to the field, thus relatively weakening the crossover due
to the canting effect of theD-vector.

One should also note that, as emphasized in section 4.3, theory leaves enough room
for the occurrence of a first-order transition even when there exists a chiral universality
class. Hence, observation of first-order transition in a few non-collinear magnets is not
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quite enough to rule out the possible existence of a chiral universality class for generic
non-collinear transitions.

6.2. Helimagnets

In this subsection, I wish to review the experimental situation for helimagnets (spiral
magnets). So far, experimental studies of the critical properties of helimagnets have been
limited almost exclusively to the rare-earth helimagnets Ho, Dy and Tb. As mentioned in
the introduction, the experimental situation for these rare-earth helimagnets has remained
confused. Different authors reported considerably different values for the same exponent
of the same material, and the reason for this discrepancy has not become clear. Here, I
do not intend to give a comprehensive review of various experimental investigations, but
rather highlight several points of the most severe conflict, discuss its possible origin and
propose possible ways to disentangle the present confusion. For a detailed review of the
experimental work on rare-earth helimagnets, I refer the reader to reference [16].

Let us begin with a survey of the present experimental status. Most authors reported
that the paramagnetic–helimagnetic transition of Ho, Dy and Tb was continuous.

6.2.1. The exponentα and the specific-heat amplitude ratioA+/A−. Several high-precision
specific-heat measurements have been made on Ho, Dy and Tb. For Dy, Lederman and
Salamon reported a crossover from behaviour characterized byα = −0.02± 0.01 and
A+/A− = 0.48±0.02 (10−2.3 < t < 10−0.5) to behaviour characterized byα = 0.18±0.08
andA+/A− = 0.44± 0.04 (10−3.3 < t < 10−2.3) [7]. Jayasuriya and co-workers gave
α = 0.27± 0.02 andA+/A− = 1.78± 0.45 for Ho (reference [104]),α = 0.24± 0.02
andA+/A− = 0.41± 0.05 for Dy (reference [105]), andα = 0.20± 0.03 andA+/A− =
0.58± 0.34 for Tb (reference [106]). Jayasuriyaet al noticed that the values ofα and
A+/A− changed somewhat according to the form of the fitting formula and the temperature
range used in the fit. For Ho, Wang, Belanger and Gaulin gaveα = 0.10± 0.02 and
A+/A− = 0.51± 0.06 (0.002< t < 0.1), or α = 0.22± 0.02 andA+/A− = 0.61± 0.07
(0.002< t < 0.1), depending on the particular form of the fitting formula [26]. They also
reported that the observed critical behaviour could not be well fitted with a single exponent.
All of the measurements quoted above agreed in that they all indicate that the transition is
continuous. Although there exists considerable scatter among the reported values ofα and
A+/A−, a tendency appears clear: the exponentα tends to be larger than the standard O(n)

values and there is a crossover-like behaviour which hinders the data from lying on a single
power-law curve in the temperature range studied.

There were also several attempts to extract the specific-heat exponent from some other
physical quantities such as electrical resistivity (reference [107]). Since the validity of such
procedures was questioned by some authors (reference [105]), I quote here only the results
of direct specific-heat measurements.

6.2.2. The exponentβ. The exponentβ has been measured by neutron, x-ray and
Mössbauer techniques. While all of the authors agreed that the transition was continuous, the
reported values ofβ were scattered wildly: 0.21 (Tb; x-ray), 0.23 (Tb; neutron), 0.25 (Tb;
neutron), 0.3 (Ho; neutron), 0.335 (Dy; M̈ossbauer), 0.37 (Ho; x-ray), 0.38 (Dy; neutron),
0.39 (Ho; neutron) to 0.39 (Dy; neutron). It is not easy to read off a systematic tendency
from this. Some of the values, particularly that ofβ for Tb, were close to then = 2 chiral
value, but other values, especially those obtained by means of neutron and x-ray diffraction
for Ho and Dy, tend to give much larger values close to the O(4) value.
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6.2.3. The exponentsγ and ν. The exponentsγ andν have been measured by means of
neutron and x-ray scattering. Neutron scattering measurements by Gaulin, Hagen and Child
gaveγ = 1.14± 0.04 ν = 0.57± 0.04 for Ho, andγ = 1.05± 0.07, ν = 0.57± 0.05
for Dy, which were close to then = 2 chiral values (reference [108]). More recent x-ray
and high-precision neutron scattering studies on Ho by Thurston and co-workers revealed
interesting new features (reference [109]). The critical scattering aboveTN actually consisted
of two components characterized by mutually different exponents: a broad component
characterized by the exponentsν = 0.55±0.04 andγ = 1.24±0.15, which was associated
with the bulk contribution inside the sample, and a narrow component characterized by
the exponentsν = 1.0 ± 0.3 and γ = 3.4–4.5, which came from the skin part of the
sample. High-precision neutron scattering for Tb also established the existence of two
such length scales (reference [110]). Exponents associated with the broad component
were in agreement with the earlier measurements. Exponents associated with the narrow
component were explained by Altarelliet al [111] as governed by the long-range-disorder
fixed point (reference [112]), on the assumption that the skin layer of Ho contains a
number of edge-dislocation dipoles. Anyway, these experiments have clearly shown that,
in order to get the bulk critical properties from the measurements sensitive to the defect-
containing skin layer, special care has to be taken to extract the bulk component from the
signal.

6.2.4. First-order transition? As already mentioned, a few authors claimed that their
experimental data for Ho and Dy were suggestive of a weak first-order transition [11,
12]. Probably, the first experimental claim that the transition in Ho might be weakly
first order was made by Tindall, Steinitz and Plumer on the basis of their measurements
of the thermal expansion for Ho along thea-axis [11]. These authors observed a jump-
like anomaly in the thermal expansivity along thea-axis, although no such anomaly was
detected along thec-axis. Tindallet al interpreted this anomaly as evidence of a first-order
transition. Later measurements by White of the thermal expansion for Ho along thea-axis,
however, led to the opposite conclusion that the transition was continuous (reference [113]),
and the situation remains unclear. Putting aside such a discrepancy among independent
measurements, an apparent jump-like behaviour observed by Tindallet al appears to be
explained by the standard power-law singularity characteristic of a continuous transition, of
the form

1a/a ≈ b0+ b1t + c±|t |1−α̃ t ≡ (T − TN)/TN
if b0 > 0, b1 > 0, c+ < 0 and c− > 0, as long as the exponent̃α, usually
identified as the specific-heat exponentα, is positive. Note that the coefficientsc±
could be negative even if the total thermal expansivity is to be positive. Hence,
the data of reference [11] cannot be regarded as unequivocal proof of a first-order
transition.

While earlier thermal-expansion measurements on the rare-earth metals Dy and Tb
indicated a continuous transition (reference [114]), Zachowskiet al suggested that the
paramagnetic–helimagnetic transition of Dy might also be first order on the basis of their
observation of deviation from a single power-law scaling behaviour in the immediate
vicinity of TN [12]. Care has to be taken in this interpretation, however, since
apparent deviation from the scaling behaviour in a vicinity ofTN could arise from many
secondary effects, such as rounding due to impurities or inhomogeneities, insufficiency of
temperature control, crossover of an as yet unidentified nature, or even the contribution
from the defect-containing skin layer, etc. Therefore, in order to experimentally conclude
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that the transition is really first order, one should give a reliable lower bound to the
discontinuity of some physical quantity at the transition, such as finite latent heat.
At present, there appears to be no such firm experimental evidence of a first-order
transition.

6.2.5. Discussion. As shown above, experimental data for rare-earth metals are sometimes
mutually conflicting. Below, I wish to try to discuss the possible cause of the conflict
together with its possible resolution.

One point to be remembered is that the magnetic interaction in these rare-earth metals is
the long-range RKKY interaction whose range is of the order of the pitch of the helix. This
means that, when one is far away fromTN and the correlation length is smaller than the
helix pitch, one should obtain ordinary mean-field critical behaviour characterized byα = 0,
β = 0.5 andγ = 1 etc [26]. Only when one further approachesTN and the correlation
length gets longer should one obtain a true asymptotic critical behaviour. If one assumes
that the asymptotic critical behaviour is also ofn = 2 chiral universality, one expects a
mean-field–n = 2 chiral crossover,α = 0→ 0.34, β = 0.5→ 0.25, γ = 1→ 1.13 etc. In
fact, this scenario appears to account for many of the experimental results. For example,
earlier specific-heat measurements by Lederman and Salamon [7], where the data exhibited
a crossover from a smallerα-value to a largerα-value, appear consistent with this scenario.
In the case ofγ , since the mean-field valueγ = 1 and then = 2 chiral valueγ ' 1.13
happen to be rather close, this crossover would be hard to detect clearly, which is also
consistent with experiment (reference [108]).

Another important ingredient might be the possible contribution from the defect-
containing skin part of the sample as discussed above. While the contribution from the
skin part can be separated aboveTN by analysing the line-shape of the scattering function
[109, 110], such separation is not straightforward belowTN since the bulk and the skin
contributions both yield resolution-limited Bragg peaks. This means that the Bragg intensity
observed so far is likely to be a superposition of these two distinct components, each with
different exponentsβ. If one assumes the above scenario, the bulk component exhibits a
crossover fromβ = 0.5 (ordinary mean-field) toβ ' 0.25 (n = 2 chiral), while, according
to reference [111], the skin component exhibits a behaviour governed by the long-range-
disorder fixed point characterized byβ = 0.5. So, a rather complicated situation might
indeed occur in rare-earth metals, and special care has to be taken in extracting information
about the asymptotic bulk critical behaviour. To my knowledge, experimental analysis fully
taking account of such complication has not yet been done especially belowTN . Thus, it
is highly desirable to extract the bulk componentbelow TN by separating the contribution
of the skin component by some experimental device.

One possible experiment to bypass the above complications might be to studyinsulating
helimagnets. There is at least one candidate material, VF2, which is known to exhibit a
paramagnetic–helimagnetic transition (reference [115]). Since the magnetic interaction in
VF2 is short ranged, one need not worry about the slow crossover from the mean-field
behaviour, and, one hopes, the effect of the defect-containing skin part would be less severe.
If so, information about the critical properties of VF2 would be valuable for disentangling the
present complicated situation concerning helimagnets, and I wish to urge experimentalists
to try such experiments.

So, one plausible scenario proposed here is that the asymptotic criticality of helimagnets
is also ofn = 2 chiral universality as in the case of stacked-triangular antiferromagnets,
which is blurred and masked by the slow crossover from the ordinary mean-field behaviour
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caused by the long-range RKKY interaction as well as by the contribution of the defect-
containing skin part of the sample. Of course, this hypothesis should be tested by
experiments, some of which have been proposed above.

6.3. Measurements of chirality

Chirality is a quantity playing an important role in non-collinear transitions. Hence, it is
of great interest to measure the chirality experimentally. Since the chirality is a multispin
variable of higher order in the original spin variables, its direct experimental detection
needs some ingenuity. Plumer, Kawamura and Caillé pointed out that, if one could prepare
a sample with a single chiral domain, the average total chiralityκ̄ could be measured
by using polarized neutrons (reference [116]). These authors also suggested that a single
chiral domain might be prepared by cooling the sample under applied electric fields. An
experimental attempt along these lines was made by Visseret al [117]. Maleyev suggested
that the chirality might be observable by measuring the polarization-dependent part of the
neutron scattering in applied magnetic fields (reference [118]). Fedorovet al suggested
that the chirality sense might be controlled by applying elastic torsion, which could be used
to prepare a single-chiral-domain sample (reference [119]). To the author’s knowledge,
however, these methods and ideas have not yet been fully substantiated. Direct experimental
detection of chirality is certainly a challenging problem, which may serve to provide a new
experimental tool for looking into non-collinear ordering.

7. Critical and multicritical behaviours under magnetic fields

In this section, I will review the phase transition of stacked-triangular antiferromagnets
under applied magnetic fields. Let us first begin with the case of unfrustrated collinear
antiferromagnets on bipartite lattices. Typical magnetic field–temperature phase diagrams
of such weakly anisotropic antiferromagnets are illustrated in figure 15 for the cases of
axial (Ising-like) anisotropy with the field applied along an easy axis (a), and for the
case of planar (XY-like) anisotropy with the field applied in an easy plane (b). Axial
magnets in a field exhibit a multicritical point, termed a bicritical point, at which two
critical lines and a first-order spin-flop line meet; see figure 15(a). The critical properties
of these axial magnets along the critical lines and at the bicritical point were theoretically
studied by Fisher and Nelson [120], and by Kosterlitz, Nelson and Fisher [121], with
the results given in figure 15. The criticalities are of standard O(n) universality with
n = 1, 2, 3. Applying a scaling theory, Fisheret al derived various predictions, which were
supported by subsequent experiments (reference [122]). It thus appears that the critical and
the multicritical behaviours of unfrustrated collinear antiferromagnets in a field are now
fairly well understood.

For the case of frustrated non-collinear antiferromagnets such as stacked-triangular
antiferromagnets, typical magnetic phase diagrams are shown in figure 16 for the cases
of axial (Ising-like) anisotropy with the field applied along an easy axis (a), and for the
case of planar (XY-like) anisotropy with the field applied in an easy plane (b). In the axial
case, three critical lines and a first-order spin-flop line meet at a new type of multicritical
point at (Tm, Hm); see figure 16(a). In the planar case, two distinct critical lines meet at a
zero-field multicritical point, termed a tetracritical point; see figure 16(b).

Such novel features of the phase diagrams and the multicritical behaviours of stacked-
triangular antiferromagnets were first observed experimentally. In the axial case, a phase
diagram with a novel multicritical point was found by Johnson, Rayne and Friedberg in
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Figure 15. A schematic magnetic field (H ) versus temperature (T ) phase diagram for a weakly
anisotropic unfrustrated antiferromagnet on a bipartite lattice; (a) an axial magnet in a field
applied along an easy axis; (b) a planar magnet in a field applied in an easy plane.

1979 for CsNiCl3 by means of susceptibility measurements [38], while in the planar case, a
phase diagram with a zero-field tetracritical point was determined by Gaulinet al in 1989 for
CsMnBr3 by means of neutron scattering measurements [39]. Subsequent phenomenological
free-energy analysis successfully reproduced the main qualitative features of these phase
diagrams [123, 124]. These multicritical behaviours in a field were also reproduced by
subsequent Monte Carlo simulations [125–127].

Scaling analysis of the critical and the multicritical properties of stacked-triangular
antiferromagnets under magnetic fields was carried out by Kawamura, Caillé and Plumer on
the basis of the chiral-universality scenario [40, 79]: according to this scaling theory, in the
axial case, the criticality along the two low-field critical lines is of standardXY universality,
while the one along the high-field critical line is ofn = 2 chiral universality. Meanwhile,
the multicritical behaviour right at the multicritical point is predicted to be ofn = 3 chiral
universality. In the planar case, the criticality along the higher-temperature critical line is of
XY universality, while that along the lower-temperature critical line is of Ising universality.
The multicritical (tetracritical) behaviour at the zero-field transition point is ofn = 2 chiral
universality governed by then = 2 chiral fixed point.
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Figure 16. A schematic magnetic field(H) versus temperature(T ) phase diagram of a weakly
anisotropic frustrated antiferromagnet on a stacked-triangular lattice; (a) an axial magnet in a
field applied along an easy axis; (b) a planar magnet in a field applied in an easy plane.

Scaling theory further predicted that, in the axial case, three critical lines should merge
at the multicritical point tangentially with the first-order spin-flop line as [40]

|H −Hm| ∝ |T − Tm|φ (7.1)

where the exponentφ ∼ 1.06 is common among the three critical lines. In fact,φ is the
anisotropy-crossover exponent at then = 3 chiral fixed point identified in the RG analysis
in section 4.2.

Similarly, in the planar case, it is predicted that the two critical lines in external fields
should merge at the zero-field tetracritical point as [40]

H 2 ∝ |T − Tm|φ (7.2)

where φ ∼ 1.04 is the anisotropy-crossover exponent at then = 2 chiral fixed point,
common between the two critical lines. Near the tetracritical point, the zero-field uniform
susceptibility was predicted to behave as [40, 42, 79]

χ(T ,H = 0) ≈ C±|T − Tm|−γ̃ + less singular and regular parts (7.3)

whereγ̃ = −(2− α − φ) ∼ −0.56.
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Figure 17. The magnetic phase diagram of the axial stacked-triangular antiferromagnet CsNiCl3

near the multicritical point as determined by sound-velocity measurements. The regions labelled
1–4 refer to the four phases in figure 16(a). The data are taken from reference [128].

These scaling predictions were tested by subsequent experiments. In the axial case,
criticality along the three critical lines as well as at the multicritical point were examined
by several authors. In particular, the predictedn = 2 chiral behaviour along the high-field
critical line as well as then = 3 chiral behaviour at the multicritical point were very well
confirmed by specific-heat measurements by Beckmann, Wosnitza and von Löhneysen on
CsNiCl3 [91], by birefringence measurements by Enderle, Furtuna and Steiner on CsNiCl3

and CsMnI3 [92] and by neutron diffraction measurements by Enderle, Schneider, Matsuoka
and Kakurai on CsNiCl3 [93]. The behaviour of the phase boundaries near the multicritical
point was investigated by Poirieret al for CsNiCl3, who found by means of ultrasonic
velocity measurements that the low-temperature low-field critical line between the collinear
and non-collinear phases (regions 2 and 3 in figure 17) exhibited a ‘turnover’ in the
immediate vicinity of the multicritical point to merge into the first-order spin-flop line,
as shown in figure 17 (reference [128]). This turnover behaviour was not expected from the
mean-field theory, but was in accord with the scaling prediction. Katori, Goto and Ajiro
[129] and Asanoet al [130] determined by magnetization measurements the phase diagrams
of other axial stacked-triangular antiferromagnets, CsNiBr3 and CsMnI3, and emphasized
universal aspects of the phase diagrams.

Along the two low-field critical lines, theory predicts the standardXY critical behaviour.
Experimentally, the critical properties at these two transition points were studied in zero
field by several methods, including those of NMR (reference [131]), neutron scattering
(reference [132]) for CsNiCl3, and neutron scattering (references [133, 134]) and specific
heat (reference [135]) for CsMnI3. Most of the results are consistent with the expected
XY criticality, although significant deviation was observed in a few cases, such as the
exponentsγ and ν reported in reference [134]. Some of such deviation may be ascribed
to the proximity effect of then = 3 chiral behaviour realized at the multicritical point at
H = Hm.

In the planar case, the situation is not entirely satisfactory. As regards the behaviour of
the two critical lines near the zero-field tetracritical point, Gaulinet al reported, on the basis
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of neutron scattering for CsMnBr3, the crossover exponentsφP−II ∼ 1.21 andφII−I ∼ 0.75
for the high- and low-temperature critical lines, respectively, which differed considerably
from the scaling results,φP−II = φII−I ∼ 1. Reanalysis of the data given by Gaulinet al,
however, revealed that, once the uncertainty ofTm was taken into account in the analysis,
the experimental data were not inconsistent with the scaling results [42]. Goto, Inami and
Ajiro found from magnetization measurementsφP−II = 1.02±0.05 andφII−I = 1.07±0.05
for CsMnBr3 (reference [136]); these values were in good agreement with the theoretical
values. By contrast, markedly smaller values,φP−II = 0.78± 0.06 andφII−I = 0.79± 0.06,
were reported by Tanaka, Nakano and Matsuo for theXY stacked-triangular antiferromagnet
CsVBr3, on the basis of susceptibility measurements (reference [137]), while the values
φP−II = 0.76± 0.1 andφII−I = 0.81± 0.1 were reported by Weber, Beckmann, Wosnitza
and von L̈ohneysen for CsMnBr3, on the basis of specific-heat measurements (reference
[138]). The cause of this discrepancy is not clear. From the theoretical side, although the
prediction that the exponentφ is common among the critical lines is a direct consequence
of the chiral-universality picture, its precise value is still subject to large uncertainties,
because it has not yet been determined by reliable numerical methods such as extensive
Monte Carlo simulation. It is thus desirable to give a more reliable numerical estimate of
the anisotropy-crossover exponentφ.

It turns out that the zero-field transition point of RbMnBr3 is also a tetracritical point
in the magnetic field–temperature phase diagram [139–141]. The associated crossover
exponents were determined by Helleret al by means of neutron scattering as 1.00± 0.35
and 1.07± 0.25, for the higher-temperature and the lower-temperature critical lines, resp-
ectively (reference [141]).

The zero-field susceptibility of CsMnBr3 was measured by Mason, Stager, Gaulin
and Collins [142]. These authors interpreted their data as being inconsistent with the
scaling prediction on the assumption that the coefficients of the leading singularity,C±
in equation (7.3), were both positive and that the contribution from the regular and less
singular terms was zero. However, once one properly takes account of the fact that the sign
of C± could be different on either side ofTm and that there is generally a finite contribution
from the regular and less singular terms, the experimental data are consistent with the scaling
theory [42, 79].

8. Summary

Recent theoretical and experimental studies on phase transitions of non-collinear or canted
magnets, including both stacked-triangular antiferromagnets and helimagnets, were reviewed
with particular emphasis on the novel critical and multicritical behaviours observed for these
magnets.

Theoretical analyses based on various renormalization-group techniques, which usually
gave good results for standard unfrustrated magnets, have given somewhat inconclusive and
sometimes conflicting results concerning the nature of the non-collinear transitions. Special
care appears to be necessary in applying the standard RG methods to a system with non-
trivial structure in the order-parameter space as in the present problem. Nevertheless, as
was discussed in detail in section 4, a most plausible possibility suggested on the basis of
the RG analyses is that either the transition is continuous, governed by a new fixed point
(chiral universality), or the transition is first order.

Most of the recent extensive Monte Carlo simulations performed onXY and Heisenberg
stacked-triangular antiferromagnets suggest the occurrence of a continuous transition
characterized by exponents significantly different from the standard O(n) exponents. In that
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sense, these Monte Carlo results support the chiral-universality scenario. The bulk of various
experiments on stacked-triangularXY and Heisenberg antiferromagnets have also yielded
results in favour of the chiral-universality scenario: a continuous transition characterized
by novel exponents close to those obtained by Monte Carlo simulations has been observed.
Meanwhile, in the case ofXY spins, many of the Monte Carlo and experimental results
also appear to be marginally consistent with mean-field tricritical behaviour, while such
behaviour is not suggested by some of the data such as the specific-heat exponents, specific-
heat amplitude ratios and chirality exponents. From a theoretical viewpoint, the mean-field
tricritical behaviour dictated by the trivial Gaussian fixed point is rather unlikely even
when the system happens to be just at its tricriticality, as long as the generic non-collinear
criticality is not of the standard O(n) universality. Thus, at least in the case of stacked-
triangular antiferromagnets, there appears to be reasonable evidence both from Monte Carlo
simulations and experiments that a new chiral universality class is in fact realized.

There still seems to exist a slight chance of a weak first-order transition, though,
indicated by either Monte Carlo simulations or experiments. Although this point needs
to be examined, it seems already clear from recent extensive studies that there exists a
rather wide and well-defined critical region, say 10−1 > t > 10−3, characterized by a set of
novel critical exponents and amplitude ratios,which are universal for various non-collinear
magnetic materials and model systems. This observation strongly suggeststhe existence
of an underlying novel fixed point governing the non-collinear criticality. The remaining
possibility is that this fixed point may be slightly complex valued. It is certainly interesting
to examine further the order of the transition both via careful numerical simulations and via
high-precision experiments, either to get unambiguous evidence of a first-order transition or
to push the limit of the continuous nature of the transition further. To do this experimentally,
one needs to choose appropriate materials which do not have a weak perturbative interaction
which breaks the chiral symmetry. In addition, to be sure that the transition is first order,
one should give a reliable lower bound on the discontinuity of some physical quantities such
as the latent heat. Mere observation of deviation from a simple power-law behaviour in the
immediate vicinity ofTN is not quite enough to allow one to conclude that the transition is
first order, since such deviation could arise from many secondary effects. Also, one should
recognize that, even when there exists a well-defined chiral universality class, it is entirely
possible that some systems sharing the same chiral symmetry exhibit first-order transitions
due to the difference in non-universal details of certain microscopic parameters.

Compared to the case for stacked-triangular antiferromagnets, the present situation for
helimagnets (spiral magnets) is less clear. In particular, the experimental situation for
rare-earth helimagnets has been confused for years now. I have proposed one possible
scenario for resolving this confusion based on the chiral-universality scenario, where the
combined effects of the long-range nature of the RKKY interaction and the contribution from
the defect-containing skin part hinder the observation of an ideal chiral critical behaviour.
It might be interesting to test the proposal by carrying out further experiments. On the
numerical side, it might be interesting to perform further Monte Carlo simulations on
helimagnets, paying attention to the effects of boundary conditions.

To sum up, the phase transitions of frustrated non-collinear magnets exhibit novel
behaviours different from those exhibited by standard unfrustrated collinear magnets.
Although there is not a complete consensus among researchers, many experimental and
numerical results on stacked-triangular antiferromagnets point to the occurrence of phase
transitions of a new chiral universality class, distinct from the standard O(n) Wilson–Fisher
universality class. As a reflection of richer structure of its order parameter, the non-collinear
transitions also possess some unique physical quantities such as chirality which have no
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counterpart for the standard unfrustrated magnets. Such rich inner symmetry also leads to
unique magnetic phase diagrams in external fields with novel multicritical behaviours. In this
decade, there has been a stimulating and fruitful interplay between theory and experiment
in this area. Hopefully, further theoretical as well as experimental work will clarify novel
features of the non-collinear transitions, which might serve to enlarge and deepen our
understanding of phase transitions and critical phenomena.
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[111] Altarelli M, Núnez-Rugueiro M D and Papoular M 1995Phys. Rev. Lett.74 3840
[112] Weinrib A and Halperin B I 1983Phys. Rev.B 27 413
[113] White G K 1989J. Phys. C: Solid State Phys.1 6987
[114] Tindall D A and Steinitz M O 1983J. Phys. F: Met. Phys.13 L71
[115] Stout J W and Boo W O J1966J. Appl. Phys.37 966

Stout J W and Lau H Y 1967J. Appl. Phys.38 1472
Lau H Y, Stout J W, Koehler W C and Child H R 1969J. Appl. Phys.40 1136

[116] Plumer M L, Kawamura H and Caillé A 1991Phys. Rev.B 43 13 786
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[124] Plumer M L and Cailĺe A 1990Phys. Rev.B 41 2543
[125] Mailhot A, Plumer M L and Cailĺe A 1993Phys. Rev.B 48 15 835
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